Rizki Hanintyo, Dinarika Jatisworo
  JFMR, pp. 396-401  


Klorofil-a (Chl-a) merupakan informasi yang sangat penting untuk mengetahui kesuburan suatu perairan. Dalam studi ini kami menyajikan analisis komparatif variabilitas klorofil-a dari produk level 3 Chl-a pada  4 (empat) data satelit yaitu Aqua MODIS, VIIRS-SNPP, Himawari-8, dan Sentinel 3 OLCI pada wilayah Selat Bali. Analisis didasarkan pada data rerata bulanan Chl-a pada tahun 2020. Hasil perhitungan rerata statistik menunjukkan bahwa informasi chl-a pada satelit Aqua MODIS dan Sentinel 3 OLCI mengalami peningkatan nilai rerata di bulan mei hingga agustus sedangkan pada satelit Himawari 8 AHI dan Suomi NPP VIIRS cenderung stabil dan tidak menunjukkan variasi. Variabilitas klorofil-a sangat nampak di daerah selat bali dan cenderung statis di daerah kepulauan Nusa Penida dan bali utara

Chlorophyll-a (Chl-a) is very important information to determine the fertility of water. In this study, we present a comparative analysis of the variability of chlorophyll-a from level 3 Chl-a products on 4 (four) satellite data, namely Aqua MODIS, VIIRS-SNPP, Himawari-8, and Sentinel 3 OLCI in the Bali Strait region. The analysis is based on Chl-a's monthly average data in 2020. The results of mean statistical calculations show that the Chl-a concentration has been increased at mei to august from Aqua MODIS and Sentinel 3 OLCI satellite data. In the other hand, Himawari 8 AHI and Suomi NPP VIIRS tend to be stable and didn’t show any variation. The Chl-a concentration showed high variability in bali strait area and tend to be stable in Nusa Penida Island and north bali seas.


Himawari-8, Chlorophyll-a, MODIS, Bali Strait, Sentinel 3 OLCI, VIRS-SNPP

Full Text:



J. A. Yoder, C. R. McClain, G. C. Feldman, and W. E. Esaias, “Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: A satellite view,” Global Biogeochem. Cycles, vol. 7, no. 1, 1993, doi: 10.1029/93GB02358.

A. Longhurst, S. Sathyendranath, T. Platt, and C. Caverhill, “An estimate of global primary production in the ocean from satellite radiometer data,” J. Plankton Res., vol. 17, no. 6, 1995, doi: 10.1093/plankt/17.6.1245.

F. Watanabe, E. Alcântara, M. Curtarelli, M. Kampel, and J. Stech, “Landsat-based remote sensing of the colored dissolved organic matter absorption coefficient in a tropical oligotrophic reservoir,” Remote Sens. Appl. Soc. Environ., vol. 9, 2018, doi: 10.1016/j.rsase.2017.12.004.

Y. Huot, M. Babin, F. Bruyant, C. Grob, M. S. Twardowski, and H. Claustre, “Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?,” Biogeosciences Discuss., 2007, doi: 10.5194/bgd-4-707-2007.

I. Moutzouris-Sidiris and K. Topouzelis, “Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data,” Open Geosci., vol. 13, no. 1, 2021, doi: 10.1515/geo-2020-0204.

M. W. Matthews, “A current review of empirical procedures of remote sensing in Inland and near-coastal transitional waters,” International Journal of Remote Sensing, vol. 32, no. 21. 2011, doi: 10.1080/01431161.2010.512947.

M. E. Carr and E. J. Kearns, “Production regimes in four Eastern Boundary Current systems,” Deep. Res. Part II Top. Stud. Oceanogr., vol. 50, no. 22–26, 2003, doi: 10.1016/j.dsr2.2003.07.015.

Y. Dandonneau, “Response to Comment on ‘Oceanic Rossby Waves Acting As a `Hay Rake’’ for Ecosystem Floating By-Products",’” Science (80-. )., vol. 304, no. 5669, 2004, doi: 10.1126/science.1095997.

R. Murtugudde, J. P. McCreary, and A. J. Busalacchi, “Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998,” Journal of Geophysical Research: Oceans, vol. 105, no. C2. 2000, doi: 10.1029/1999jc900294.

M. J. Behrenfeld et al., “Biospheric primary production during an ENSO transition,” Science (80-. )., vol. 291, no. 5513, 2001, doi: 10.1126/science.1055071.

C. Wilson and V. J. Coles, “Global climatological relationships between satellite biological and physical observations and upper ocean properties,” J. Geophys. Res. C Ocean., vol. 110, no. 10, 2005, doi: 10.1029/2004JC002724.

W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett., 2005, doi: 10.1029/2004GL021808.

V. Vantrepotte and F. Mélin, “Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration,” ICES J. Mar. Sci., vol. 66, no. 7, 2009, doi: 10.1093/icesjms/fsp107.

W. W. Gregg, P. Ginoux, P. S. Schopf, and N. W. Casey, “Phytoplankton and iron: Validation of a global three-dimensional ocean biogeochemical model,” Deep. Res. Part II Top. Stud. Oceanogr., vol. 50, no. 22–26, 2003, doi: 10.1016/j.dsr2.2003.07.013.

M. Vichi, N. Pinardi, and S. Masina, “A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory,” J. Mar. Syst., vol. 64, no. 1–4, 2007, doi: 10.1016/j.jmarsys.2006.03.006.

G. Volpe, R. Santoleri, V. Vellucci, M. Ribera d’Alcalà, S. Marullo, and F. D’Ortenzio, “The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates,” Remote Sens. Environ., vol. 107, no. 4, 2007, doi: 10.1016/j.rse.2006.10.017.

G. Volpe, S. Colella, V. Forneris, C. Tronconi, and R. Santoleri, “The Mediterranean Ocean Colour Observing System – System development and product validation,” Ocean Sci., vol. 8, no. 5, 2012, doi: 10.5194/os-8-869-2012.


  • There are currently no refbacks.

Copyright (c) 2021 JFMR (Journal of Fisheries and Marine Research)