FATTY ACID COMPOSITION ANALYSIS OF OIL EXTRACT MICROALGAE Spirulina sp. WITH DIFFERENT EXTRACTION METHODS

Authors

  • Heder Djamaludin Brawijaya University
  • Anies Chamidah Brawijaya University

DOI:

https://doi.org/10.21776/ub.jfmr.2021.005.02.10

Keywords:

Fatty Acid, GC-MS, MAE, Spirulina sp., UAE

Abstract

The microalgae Spirulina sp. is a potential biological resource. Utilization of Spirulina sp. very broad in various industrial fields such as nutraceutical, food, cosmetic and pharmaceutical. The purpose of this study was to analyze the chemical composition and fatty acid profile of the Spirulina sp. extracted by different mechanical cell disruption methods. This research method is descriptive, where the microalgae Spirulina sp. extracted using Microwave-Assisted Extraction (MAE) and Ultrasonic Assisted Extraction (UAE) methods, then the oil extract was analyzed for chemical composition and fatty acid profile with GC-MS instrument. The results showed that the oil extract of Spirulina sp. which extracted by MAE method contains 12 types of fatty acids where the levels of Saturated Fatty Acid are 56.01%, Mono-Unsaturated Fatty Acid 7.67%, and Poly-Unsaturated Fatty Acid 36.32%. Spirulina sp. oil extract contains ω-6 (17.17-18.87%) and ω-9 (4.34%) unsaturated fatty acids. Then the Spirulina sp. oil extract extracted by the UAE method contains 19 types of fatty acids where the levels of Saturated Fatty acids are 59.25%, Mono-Unsaturated Fatty acids 8.89%, and Poly-Unsaturated Fatty acids 40.87%. Spirulina sp. oil extract contains types of unsaturated fatty acids ω-3 (0.18-0.41%), ω-6 (18.39-27.73%), and ω-9 (3.50%). The highest fatty acid content in Spirulina sp. oil extract are palmitic acid/SFA (53.30-56.57%), oleic acid/MUFA (4.34-4.50%), and linoleic acid/PUFA (18.39-18.88%).

Author Biographies

Heder Djamaludin, Brawijaya University

Fisheries Product Technology Study Program, Faculty of Fisheries and Marine Science

Anies Chamidah, Brawijaya University

Fisheries Product Technology Study Program, Faculty of Fisheries and Marine Science

References

R. H. Wijffels, M. J. Barbosa, and M. H. M Eppink, “Microalgae for the production of bulk chemicals and biofuels,†Biofuels, Bioprod. Bioref., vol. 4, pp. 287–295, 2010, doi: 10.1002/bbb/215.

I. T. Suryaningtyas, “Senyawa bioaktif mikroalga dan prospeknya di masa depan,†Oseana, vol. 44, no. 1, pp. 15–25, 2019, doi: 10.14203/oseana.2019.vol.44no.1.28.

Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, “Biofuels from microalgae,†Biotechnol. Prog., vol. 24, no. 4, pp. 815–820, 2008, doi: 10.1021/bp.070371k.

I. Setyaningsih, H. Linawati, D. R. Monintja, M. F. A. Sondita, and M. Bintang, “Ekstraksi Senyawa Antibakteri dari Diatom Chaetoceros gracilis dengan Berbagai Metode,†MATEC Web Conf., vol. 35, pp. 1–5, 2017.

R. B. Draaisma, R. H. Wijffels, P. M. Slegers, L. B. Brentner, A. Roy, and M. J. Barbosa, “Food commodities from microalgae,†Current Opinion in Biotechnology, vol. 24, no. 2. pp. 169–177, Apr. 2013, doi: 10.1016/j.copbio.2012.09.012.

E. Ryckebosch, K. Muylaert, and I. Foubert, “Optimization of an analytical procedure for extraction of lipids from microalgae,†JAOCS, J. Am. Oil Chem. Soc., vol. 89, no. 2, pp. 189–198, 2012, doi: 10.1007/s11746-011-1903-z.

A. C. Guedes, H. M. Amaro, C. R. Barbosa, R. D. Pereira, and F. X. Malcata, “Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses,†Food Res. Int., vol. 44, no. 9, pp. 2721–2729, Nov. 2011, doi: 10.1016/j.foodres.2011.05.020.

F. Chemat, Zill-E-Huma, and M. K. Khan, “Applications of ultrasound in food technology: Processing, preservation and extraction,†in Ultrasonics Sonochemistry, 2011, vol. 18, no. 4, pp. 813–835, doi: 10.1016/j.ultsonch.2010.11.023.

W. Barqi, “Pengambilan Minyak Mikroalga Chlorella sp. dengan Metode Microwave Assisted Extraction,†J. Bahan Alam Terbarukan, vol. 3, no. 1, pp. 34–41, 2014, doi: 10.15294/jbat.v3i1.5764.

G. Breuer et al., “Analysis of fatty acid content and composition in microalgae.,†J. Vis. Exp., no. 80, 2013, doi: 10.3791/50628.

H. Diraman, E. Koru, and H. Dibeklioglu, “Fatty acid profile of Spirulina platensis used as a food supplement,†Isr. J. Aquac., vol. 61, no. 2, 2009, doi: 10.46989/001c.20548.

S. M. Abdo, G. H. Ali, and F. K. El-Baz, “Potential Production of Omega Fatty Acids from Microalgae,†Int. J. Pharm. Sci. Rev. Res., vol. 34, no. 2, pp. 210–215, 2015.

Y. Tsurkan, T. Karpenyuk, I. Guschina, S. Orazova, A. Goncharova, and R. Beisembaeva, “Identification of newly-isolated microorganisms containing valuable polyunsaturated fatty acids,†J. Biotech Res., vol. 6, pp. 14–20, 2015.

F. J. Barba, Z. Zhu, M. Koubaa, A. S. Sant’Ana, and V. Orlien, “Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review,†Trends in Food Science and Technology, vol. 49. Elsevier Ltd, pp. 96–109, Mar. 01, 2016, doi: 10.1016/j.tifs.2016.01.006.

F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian, “Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review,†Ultrasonics Sonochemistry, vol. 34. Elsevier B.V., pp. 540–560, Jan. 01, 2017, doi: 10.1016/j.ultsonch.2016.06.035.

T. Chimsook and W. Wannalangka, “Effect of Microwave Pretreatment on Extraction Yield and Quality of Catfish Oil in Northern Thailand,†EDP Sci., no. 35, pp. 1–5, 2015, doi: 10.1051/C.

M. Ranitha, A. H. Nour, Z. A. Sulaiman, A. H. Nour, and T. R. S., “A Comparative Study of Lemongrass (Cymbopogon Citratus) Essential Oil Extracted by Microwave-Assisted Hydrodistillation (MAHD) and Conventional Hydrodistillation (HD) Method,†Int. J. Chem. Eng. Appl., vol. 5, no. 2, pp. 104–108, Apr. 2014, doi: 10.7763/ijcea.2014.v5.360.

C. Agostoni, L. Moreno, and R. Shamir, “Palmitic acid and health: introduction.,†Crit. Rev. Food Sci. Nutr., vol. 56, no. 12, pp. 1941–1942, 2016, doi: 10.1080/10408398.2015.1017435.

D. M. Utari, “Kandungan asam lemak, zink, dan copper pada tempe. Bagaimana potensinya untuk mencegah penyakit degeneratif?,†Gizi Indones., vol. 33, no. 2, pp. 108–115, 2010, doi: 10.36457/gizindo.v33i2.87.

M. Remize, Y. Brunel, J. L. Silva, J. Y. Berthon, and E. Filaire, “Microalgae n-3 PUFAs production and use in food and feed industries,†Mar. Drugs, vol. 19, no. 2, pp. 1–29, 2021, doi: 10.3390/md19020113.

N. A. Muhamad and J. Mohamad, “Fatty acids composition of selected Malaysian fishes,†Sains Malaysiana, vol. 41, no. 1, pp. 81–94, 2012.

D. Patras, C. V. Moraru, and C. Socaciu, “Bioactive ingredients from microalgae: food and feed applications,†Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol., vol. 76, no. 1, pp. 1–9, 2019, doi: 10.15835/buasvmcn-fst:2018.0018.

Downloads

Published

2021-09-01

Issue

Section

Articles

Most read articles by the same author(s)