Alfi Nur Rusydi, Ferryati Masitoh
  JFMR, pp. 304-317  


Penurunan fungsi waduk Sutami yang berupa sedimentasi intensif dalam kurun waktu 2013-2019 perlu dilakukan upaya identifikasi dan monitoring. Upaya ini dilakukan dengan memanfaatkan teknologi penginderaan jauh yang bertujuan untuk menganalisis dinamika sedimentasi perairan berdasarkan kedalaman relatif air dan tingkat kekeruhan air di waduk Sutami pada musim kemarau tahun 2013-2019. Citra satelit Landsat 8 OLI diolah untuk mendapat nilai Relative Water Depth (RWD) dan Normalized Difference Turbidity Index (NDTI). Hasil penelitian menunjukkan bahwa pada tahun 2013 hingga tahun 2019, kenampakan air keruh cenderung teridentifikasi di bagian timur waduk yang juga merupakan inlet waduk Sutami. Analisis kedalaman relatif air dilakukan untuk mengetahui dampak sedimentasi terhadap perubahan kedalaman perairan. Tingkat kekeruhan dan kedalaman relatif perairan tidak berhubungan langsung yang kuat secara statistik. Semakin keruh suatu perairan, maka belum tentu kedalaman relatif pada perairan tersebut menjadi semakin dangkal. Proses sedimentasi perairan di waduk Sutami yang terjadi pada tahun 2013-2019 menunjukkan bahwa proses tersebut dipengaruhi oleh tingkat kekeruhan.


kedalaman perairan; kekeruhan; kemarau; NDTI; waduk

Full Text:



M. M. R. Tabari, M. N. Azadani, and R. Kamgar, Development of operation multi-objective model of dam reservoir under conditions of temperature variation and loading using NSGA-II and DANN models: a case study of Karaj/Amir Kabir dam, vol. 24, no. 16. Springer Berlin Heidelberg, 2020.

D. Ralston, B. Yellen, and J. Woodruff, “Watershed sediment supply and potential impacts of dam removals for an estuary,” Earth Sp. Sci. Open Arch., no. Lane 1955, 2020.

A. Mohseni-Bandpei et al., “Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran,” Environ. Sci. Pollut. Res., vol. 25, no. 29, pp. 29227–29239, 2018.

J. C. Alais, P. Carpentier, and M. De Lara, “Multi-usage hydropower single dam management: chance-constrained optimization and stochastic viability,” Energy Syst., vol. 8, no. 1, pp. 7–30, 2017.

M. F. G. Brito, V. S. Daga, and J. R. S. Vitule, “Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region,” Hydrobiologia, vol. 847, no. 18, pp. 3877–3895, 2020.

Dinas Komunikasi dan Informatika Pemerintah Provinsi Jawa Timur, “Sebesar 90% Air Waduk Sutami Untuk Irigasi Pertanian,” 2018. [Online]. Available:

Perusahaan Umum (Perum) Jasa Tirta 1, “Laporan Tahunan Perusahaan Umum (Perum) Jasa Tirta I Tahun 2018,” Malang, 2019.

V. Mano, J. Nemery, P. Belleudy, and A. Poirel, “Assessment of suspended sediment transport in four alpine watersheds (France): influence of the climatic regime,” Hydrol. Process., vol. 23, no. 5, pp. 777–792, 2009.

S. Bid and G. Siddique, “Identification of seasonal variation of water turbidity using NDTI method in Panchet Hill Dam, India,” Model. Earth Syst. Environ., vol. 5, no. 4, pp. 1179–1200, 2019.

S. Afshar, A. Shamsai, and B. Saghafian, “Dam sediment tracking using spectrometry and Landsat 8 satellite image, Taleghan Basin, Iran,” Environ. Monit. Assess., vol. 188, no. 2, pp. 1–10, 2016.

I. E. Issa, N. Al-Ansari, G. Sherwany, and S. Knutsson, “Evaluation and modification of some empirical and semi-empirical approaches for prediction of area-storage capacity curves in reservoirs of dams,” Int. J. Sediment Res., vol. 32, no. 1, pp. 127–135, 2017.

S. R. Chalov, V. O. Bazilova, and M. K. Tarasov, “Modelling suspended sediment distribution in the selenga river delta using LandSat data,” Proc. Int. Assoc. Hydrol. Sci., vol. 375, no. August 1993, pp. 19–22, 2017.

L. H. Trinh et al., “Estimation of suspended sediment concentration using VNREDSat – 1A multispectral data, a case study in Red River, Hanoi, Vietnam,” Geogr. Environ. Sustain., vol. 11, no. 3, pp. 49–60, 2018.

X. Xu, H. Fan, X. Chen, and C. Mi, “Estimating low eroded sediment concentrations by turbidity and spectral characteristics based on a laboratory experiment,” Environ. Monit. Assess., vol. 192, no. 2, 2020.

M. Bergen et al., “Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf of southern California,” Mar. Biol., vol. 138, no. 3, pp. 637–647, 2001.

A. Krajewski and A. E. Sikorska-Senoner, “Suspended sediment routing through a small on-stream reservoir based on particle properties,” J. Soils Sediments, 2021.

T. Sabzevari and A. Talebi, “Effect of hillslope topography on soil erosion and sediment yield using USLE model,” Acta Geophys., vol. 67, no. 6, pp. 1587–1597, 2019.

A. Sadeghian, J. Hudson, H. Wheater, and K. E. Lindenschmidt, “Sediment plume model—a comparison between use of measured turbidity data and satellite images for model calibration,” Environ. Sci. Pollut. Res., vol. 24, no. 24, pp. 19583–19598, 2017.

A. Movahedi, M. R. Kavianpour, and O. Aminoroayaie Yamini, “Evaluation and modeling scouring and sedimentation around downstream of large dams,” Environ. Earth Sci., vol. 77, no. 8, pp. 1–17, 2018.

E. Sebok, P. Engesgaard, and C. Duque, “Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series,” Environ. Monit. Assess., vol. 189, no. 9, 2017.

R. Foteh, V. Garg, B. R. Nikam, M. Y. Khadatare, S. P. Aggarwal, and A. S. Kumar, “Reservoir Sedimentation Assessment Through Remote Sensing and Hydrological Modelling,” J. Indian Soc. Remote Sens., vol. 46, no. 11, pp. 1893–1905, 2018.

A. H. Zaji, H. Bonakdari, and B. Gharabaghi, “Applying upstream satellite signals and a 2-d error minimization algorithm to advance early warning and management of flood water levels and river discharge,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 902–910, 2019.

A. H. Zaji, H. Bonakdari, and B. Gharabaghi, “Reservoir water level forecasting using group method of data handling,” Acta Geophys., vol. 66, no. 4, pp. 717–730, 2018.

K. A. Hakeem, P. V. Raju, E. S. Sankar, and S. Jonna, “Role of IRS-1C in Developing Remote Sensing Applications for Water Management in India,” J. Indian Soc. Remote Sens., vol. 8, 2021.

S. Yu and V. S. Mantravadi, “Study on Distribution Characteristics of Suspended Sediment in Yellow River Estuary Based on Remote Sensing,” J. Indian Soc. Remote Sens., vol. 47, no. 9, pp. 1507–1513, 2019.

C. Zhan et al., “Remote sensing retrieval of surface suspended sediment concentration in the Yellow River Estuary,” Chinese Geogr. Sci., vol. 27, no. 6, pp. 934–947, 2017.

V. Garg et al., “Spectral similarity approach for mapping turbidity of an inland waterbody,” J. Hydrol., vol. 550, pp. 527–537, 2017.

W. H. Chien, T. S. Wang, H. C. Yeh, and T. K. Hsieh, “Study of NDVI Application on Turbidity in Reservoirs,” J. Indian Soc. Remote Sens., vol. 44, no. 5, pp. 829–836, 2016.

J. Gardelle, P. Hiernaux, L. Kergoat, and M. Grippa, “Less rain, more water in ponds: A remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali),” Hydrol. Earth Syst. Sci., vol. 14, no. 2, pp. 309–324, 2010.

J. P. Lacaux, Y. M. Tourre, C. Vignolles, J. A. Ndione, and M. Lafaye, “Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal,” Remote Sens. Environ., vol. 106, no. 1, pp. 66–74, 2007.

M. K. Tarasov and O. V. Tutubalina, “Estimating the Water Turbidity in the Selenga River and Adjacent Waters of Lake Baikal Using Remote Sensing Data,” Izv. - Atmos. Ocean Phys., vol. 54, no. 9, pp. 1353–1362, 2018.

W. R. Normark, D. J. W. Piper, H. Posamentier, C. Pirmez, and S. Migeon, Variability in form and growth of sediment waves on turbidite channel levees, vol. 192, no. 1–3. 2002.

R. B. Wynn and D. A. V. Stow, “Classification and characterisation of deep-water sediment waves,” Mar. Geol., vol. 192, no. 1–3, pp. 7–22, 2002.

M. M. Nasr-Azadani and E. Meiburg, “Influence of seafloor topography on the depositional behavior of bi-disperse turbidity currents: A three-dimensional, depth-resolved numerical investigation,” Environ. Fluid Mech., vol. 14, no. 2, pp. 319–342, 2014.

Y. Darama, Z. Selek, B. Selek, M. A. Akgul, and M. Dagdeviren, “Determination of sediment deposition of Hasanlar Dam using bathymetric and remote sensing studies,” Nat. Hazards, vol. 97, no. 1, pp. 211–227, 2019.

J. F. Mas, “Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks,” Estuar. Coast. Shelf Sci., vol. 59, no. 2, pp. 219–230, 2004.

H. Jiang et al., “Remote Sensing Reversion of Water Depths and Water Management for the Stopover Site of Siberian Cranes at Momoge, China,” Wetlands, vol. 35, no. 2, pp. 369–379, 2015.

D. R. Lyzenga, “Passive remote sensing techniques for mapping water depth and bottom features,” Appl. Opt., vol. 17, no. 3, pp. 379–383, Feb. 1978.

M. A. Fonstad and W. A. Marcus, “Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models,” Geomorphology, vol. 72, no. 1–4, pp. 320–339, 2005.

E. M. Louchard, R. P. Reid, F. C. Stephens, C. O. Davis, R. A. Leathers, and D. T. Valerie, “Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach,” Limnol. Oceanogr., vol. 48, no. 1part2, pp. 511–521, 2003.

D. G. Hadjimitsis, M. G. Hadjimitsis, C. Clayton, and B. A. Clarke, “Determination of Turbidity in Kourris Dam in Cyprus Utilizing Landsat TM Remotely Sensed Data,” Water Resour. Manag., vol. 20, no. 3, pp. 449–465, 2006.

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr., vol. 48, no. 1part2, pp. 547–556, 2003.

K. C. Tan, H. S. Lim, M. Z. MatJafri, and K. Abdullah, “A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery,” Environ. Monit. Assess., vol. 184, no. 6, pp. 3813–3829, 2012.

X. Jiang and Y. Wei, “Erosion characteristics of outburst floods on channel beds under the conditions of different natural dam downstream slope angles,” Landslides, vol. 17, no. 8, pp. 1823–1834, 2020.

M. Abdellah, H. Mohamed, and D. Farouk, “The implication of climate change and precipitation variability on sedimentation deposits in Algerian dams,” Arab. J. Geosci., vol. 11, no. 23, 2018.

I. Kocaman, F. Konuccu, and A. Istanbulluoglu, “Research on the sedimentation and erosion problem of the Ergene River Basin in Western Turkey and precautions to control it,” Eurasian Soil Sci., vol. 40, no. 10, pp. 1110–1116, 2007.

G. M. Kondolf et al., “Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents,” Earth’s Futur., vol. 2, no. 5, pp. 256–280, 2014.

P. Espa, E. Castelli, G. Crosa, and G. Gentili, “Environmental Effects of Storage Preservation Practices: Controlled Flushing of Fine Sediment from a Small Hydropower Reservoir,” Environ. Manage., vol. 52, no. 1, pp. 261–276, 2013.

A. Doretto, T. Bo, F. Bona, M. Apostolo, D. Bonetto, and S. Fenoglio, “Effectiveness of artificial floods for benthic community recovery after sediment flushing from a dam,” Environ. Monit. Assess., vol. 191, no. 2, 2019.

S. Dutta, “Soil erosion, sediment yield and sedimentation of reservoir: a review,” Model. Earth Syst. Environ., vol. 2, no. 3, pp. 1–18, 2016.


  • There are currently no refbacks.

Copyright (c) 2021 JFMR (Journal of Fisheries and Marine Research)