ANALISIS KEANEKARAGAMAN PERIFITON DI ANAK SUNGAI BRANTAS, MALANG, JAWA TIMUR, INDONESIA

Authors

  • Indah Soraya Universitas 45 Mataram
  • R Adharyan Islamy Brawijaya University

Keywords:

Bentos, Epilitik, Mikroalga, Perifiton, Sungai.

Abstract

Komunitas perifiton sungai telah merespons kondisi lingkungan. Mereka berguna dalam menggambarkan keadaan ekologis, kinerja, dan keberlanjutan ekosistem karena kemampuan untuk mengukur berbagai parameter lingkungan dan menghubungkannya dengan keanekaragaman, kemerataan, dan kekayaan. Studi ini menyelidiki keanekaragaman perifiton Sungai Bango di Malang dan karenanya menghasilkan daftar periksa kekayaan perifiton sungai, terutama perifiton epilitik. Pengambilan sampel perifiton dan identifikasi dilakukan di Laboratorium Hidrobiologi Fakultas Perikanan dan Ilmu Kelautan Universitas Brawijaya Malang. Penelitian ini dilakukan seminggu sekali dalam sebulan (Mei 2020) antara jam 9 dan 13 (GMT + 7). Identifikasi dan sampel Perifiton dikumpulkan dengan cara mengikis substrat (batuan/batuan) di dalam dan di sekitar titik pengambilan sampel air masing-masing. Hasil penelitian menunjukkan kelimpahan total perifiton berkisar antara 938.900 Ind/mm2 sampai dengan 1.598.125 Ind/mm2 dengan 30 genera yang ditemukan. Kami berasumsi bahwa titik sampling 1 sampai 3 memiliki indeks keanekaragaman sedang; Sebaran jumlah individu tiap spesies tergolong sedang; stabilitas komunitas sedang dan organisme akuatik dapat mentolerir kondisi lingkungan. Namun, titik pengambilan sampel 4 memiliki keragaman yang rendah; sebaran jumlah masing-masing spesies rendah; stabilitas komunitasnya rendah dan hanya dapat ditoleransi oleh organisme akuatik tertentu.

References

Ahn, C., Song, H., Lee, S., Oh, J., Ahn, H., Park, J., Lee, J. and Joo, J., 2013. Effects of Water Velocity and Specific Surface Area on Filamentous Periphyton Biomass in an Artificial Stream Mesocosm. Water, 5(4), pp.1723-1740.

F. O. Alika and O. C. Akoma, “Preliminary Checklist of Phytoplankton and Periphyton in River Okhuo, Nigeria,†Current Research Journal of Biological Sciences, vol. 4, no. 5, pp. 538–543, 2012.

D. Bilanovic, M. Holland, J. Starosvetsky, and R. Armon, “Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture,†Bioresource Technology, vol. 220, pp. 282–288, Nov. 2016, doi: 10.1016/j.biortech.2016.08.083.

J. L. Camas-Anzueto, J. A. Gómez-Valdéz, R. Meza-Gordillo, M. Pérez-Patricio, H. R. Hernández de León, and V. León-Orozco, “Sensitive layer based on Lophine and calcium hydroxide for detection of dissolved oxygen in water,†Measurement, vol. 68, pp. 280–285, May 2015, doi: 10.1016/j.measurement.2015.02.015.

C. Chakraborty, M. M. Huq, S. Ahmed, T. Tabassum, and M. R. Miah, “Analysis Of The Causes And Impacts Of Water Pollution Of Buriganga River: A Critical Study,†International Journal Of Scientific & Technology Research, vol. 2, no. 9, pp. 245–252, 2013.

D. F. Charles, A. P. Tuccillo, and T. J. Belton, “Use of diatoms for developing nutrient criteria for rivers and streams: A Biological Condition Gradient approach,†Ecological Indicators, vol. 96, pp. 258–269, Jan. 2019, doi: 10.1016/j.ecolind.2018.08.048.

T. A. Costache, F. G. Acién Fernández, M. M. Morales, J. M. Fernández-Sevilla, I. Stamatin, and E. Molina, “Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors,†Applied Microbiology and Biotechnology, vol. 97, no. 17, pp. 7627–7637, Jun. 2013, doi: 10.1007/s00253-013-5035-2.

T. J. Danielson et al., “An algal model for predicting attainment of tiered biological criteria of Maine’s streams and rivers,†Freshwater Science, vol. 31, no. 2, pp. 318–340, Jun. 2012, doi: 10.1899/11-061.1.

D. M. DeNicola and M. Kelly, “Role of periphyton in ecological assessment of lakes,†Freshwater Science, vol. 33, no. 2, pp. 619–638, Jun. 2014, doi: 10.1086/676117.

I. Fernández, F. G. Acién, J. M. Fernández, J. L. Guzmán, J. J. Magán, and M. Berenguel, “Dynamic model of microalgal production in tubular photobioreactors,†Bioresource Technology, vol. 126, pp. 172–181, Dec. 2012, doi: 10.1016/j.biortech.2012.08.087.

N. R. Fortes and L. A. G. Pinosa, “Composition of phytobenthos in ‘lab-lab’, a periphyton-based extensive aquaculture technology for milkfish in brackishwater ponds during dry and wet seasons,†Journal of Applied Phycology, vol. 19, no. 6, pp. 657–665, Aug. 2007, doi: 10.1007/s10811-007-9225-0.

M. Fujii, S. Tanabe, M. Yamada, T. Mishima, T. Sawadate, and S. Ohsawa, “Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan,†Journal of Hydrology: Regional Studies, vol. 11, pp. 107–116, Jun. 2017, doi: 10.1016/j.ejrh.2015.10.007.

J. J. Garcia Gonzalez, G. A. Correa Londoño, and S. C. Pardo-Carrasco, “Phytoplankton and periphyton in ponds with Nile tilapia (Oreochromis niloticus) and bocachico (Prochilodus magdalenae)â€, Rev. colomb. cienc. pecu., vol. 25, no. 4, pp. 603–614, Dec. 2012.

Hariyadi S, Suryadiputra INN, Widigdo B. 1992. Limnologi. Metode Analisis Kualitas Air. Bogor. Management of Aquatic Resources. Bogor Agricultural Institute. Bogor.

Md. R. A. Hossain, Md. M. H. Pramanik, and Md. M. Hasan, “Diversity indices of plankton communities in the River Meghna of Bangladesh,†International Journal of Fisheries and Aquatic Studies, vol. 5, no. 3, pp. 330–334, 2017.

A. Kazbar, G. Cogne, B. Urbain, H. Marec, B. Le-Gouic, J. Tallec, H. Takache, A. Ismail, J. Pruvost, “Effect of dissolved oxygen concentration on microalgal culture in photobioreactors,†Algal Research, vol. 39, p. 101432, May 2019, doi: 10.1016/j.algal.2019.101432.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,†New Journal of Physics, vol. 15, no. 4, p. 045026, Apr. 2013, doi: 10.1088/1367-2630/15/4/045026.

L. G. Korneva and V. V. Solovyeva, “Golden algae (Chrysophyta) in plankton of the Volga River reservoirs: Taxonomic structure, dynamics of diversity, and abundance,†Inland Water Biology, vol. 10, no. 2, pp. 168–175, Apr. 2017, doi: 10.1134/s1995082917020067.

Kristiansen J, Å kaloud P. 2017. Chrysophyta. In: Archibald J, Simpson A, Slamovits C. (eds) Handbook of the Protists. Springer, Cham.

Lehner P, Staudinger C, Borisov S, Klimant I. 2014. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nature Communications 5(4460).

Maghanga JK, Kituyi JL, Kisinyo PO, Ng'Etich WK. 2013. Impact of nitrogen fertilizer applications on surface water nitrate levels within a kenyan tea plantation. Journal of Chemistry 1-4.

Martin G, Fernandez MD. 2012. Diatoms as indicators of water quality and ecological status: sampling, analysis and some ecological remarks. INTECH Open Access Publisher. Available in 10.5772/33831.

Mason CF. 2010. Biology of freshwater pollution. Harlow: Prentice-Hall.

Mattson MD. 1999. Acid lakes and rivers. In: Environmental Geology. Encyclopedia of Earth Science. Springer, Dordrecht. Available in https://doi.org/10.1007/1-4020-4494-1_4

Minelgaite G, Alst NV, Stephansen DA, Bollmann UE, Bester K, Fejerskov ML, Nielsen AH, Vollertsen J. 2020. An exploratory study of benthic diatom communities in stormwater ponds of different land uses and varying biocide contamination. Aquatic Ecology 54(3): 761-774.

Morales M, Sánchez L, Revah S. 2017. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiology Letters 365(3).

Mori T, Miyagawa Y, Onoda Y, Kayaba Y. 2017. Flow-velocity-dependent effects of turbid water on periphyton structure and function in flowing water. Aquatic Sciences 80(1).

Müller BJ, Burger T, Borisov SM, Klimant I. 2015. High performance optical trace oxygen sensors based on NIR-emitting benzoporphyrins covalently coupled to silicone matrixes. Sensors and Actuators B: Chemical 216: 527–534.

Noga T, Poradowska A, Peszek Å, Rybak M. 2018. Rare calciphilous diatoms from the genus Gomphonema (Bacillariophyta) in lotic waters of SE Poland. Oceanological and Hydrobiological Studies 47(1): 27-40.

Novais MH, Jüttner I, Vijver BV, Morais MM, Hoffmann L, Ector L. 2015. Morphological variability within the Achnanthidium minutissimum species complex (Bacillariophyta): Comparison between the type material of Achnanthes minutissima and related taxa, and new freshwater Achnanthidium species from Portugal. Phytotaxa 224(2): 101.

Othman A, Khairudin WM, Othman J, Ghani MA, Saudi ASM. 2017. Water flow measuring methods in small hydropower for streams and rivers-A study. International Journal of Applied Engineering Research 12: 14484-14489.

Park H, Kwon D, Kim B, Hwang S. 2016. Short-term effects of elevated CO2 on periphyton community in an artificially constructed channel. Journal of Ecology and Environment 40(1).

Poniewozik M. 2017. Element composition of trachelomonas envelopes (Euglenophyta). Polish Botanical Journal, 62(1): 77-85.

Prihantini NB, Wardhana W, Hendrayanti D, Widyawan A, Ariyani Y, Rianto R. 2010. Biodiversitas Cyanobacteria dari beberapa situ/danau di kawasan Jakarta-Depok-Bogor, Indonesia. MAKARA of Science Series 12(1).

Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N. 2010. The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology 40(8): 699-821.

Raso S, Genugten BV, Vermuë M, Wijffels RH. 2011. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology 24(4): 863-871.

Rivera MJ, Luís AT, Grande JA, Sarmiento AM, Dávila JM, Fortes JC, Córdoba F, Diaz-Curiel J, Santisteban M. 2019. Physico-chemical influence of surface water contaminated by acid mine drainage on the populations of diatoms in dams (Iberian Pyrite Belt, SW Spain). International journal of environmental research and public health 16(22): 4516.

Salem Z, Ghobara M, Nahrawy AA. 2017. Spatio-temporal evaluation of the surface water quality in the middle Nile Delta using Palmer's algal pollution index. Egyptian Journal of Basic and Applied Sciences 4(3): 219-226.

Sawaiker RU, Rodrigues BF. 2017. Biomonitoring of selected freshwater bodies using diatoms as ecological indicators. Journal of Ecosystem and Ecography 7: 234.

Schmidt TS, Konrad CP, Miller JL, Whitlock SD, Stricker CA. 2019. Benthic algal (periphyton) growth rates in response to nitrogen and phosphorus: parameter estimation for water quality models. JAWRA Journal of the American Water Resources Association 55(6): 1479-1491.

Schulte PM. 2015. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology 218(12): 1856-1866.

Setiowati, Roto, Wahyuni ET. 2016. Monitoring of nitrite and nitrate content in ground water of Catur Tunggal Region of Yogyakarta by UV-VIS spectrophotometry. Jurnal Manusia dan lingkungan 23(2): 143-148.

Shehata N, Meehan K, Ashry I, Kandas I, Xu Y. 2013. Lanthanide-doped ceria nanoparticles as fluorescence-quenching probes for dissolved oxygen. Sensors and Actuators B: Chemical 183: 179–186.

M. Sirait, F. Rahmatia, and P. Pattulloh, “Komparasi Indeks Keanekaragaman Dan Indeks Dominansi Fitoplankton di Sungai Ciliwung Jakarta (comparison of diversity index and dominant index of phytoplankton at Ciliwung River Jakarta),†Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, vol. 11, no. 1, p. 75, 2018.

Sudrajat A, Bintoro A. 2016. Pengukuran konsentrasi ortofosfat di Danau Tondano. Buletin Teknik Litkayasa 14(2): 127-133.

Sugie K, Fujiwara A, Nishino S, Kameyama S, Harada N. 2020. Impacts of temperature, CO2, and salinity on phytoplankton community composition in the Western Arctic Ocean. Frontiers in Marine Science 6.

Tunggul A, Rahadi B, Hidayat YI. 2017. Kajian potensi ekologis sempadan Sungai Bango, Kecamatan Blimbing, Kota Malang. Jurnal Sumber Daya Alam dan Lingkungan 4(1): 34 – 42.

Vincent W. 2009. Cyanobacteria. Encyclopedia of Inland Waters 226-232.

Wang B, Lan CQ, Horsman M. 2012. Closed photobioreactors for production of microalgal biomasses. Biotechnology advances 30(4): 904-912.

Wei Y, Jiao Y, An D, Li D, Li W, Wei Q. 2019. Review of dissolved oxygen detection technology: from laboratory analysis to online intelligent detection. Sensors (Basel, Switzerland) 19(18): 3995.

WVDEP (West Virginia Department of Environmental Protection). 2018. Watershed Assessment Branch 2018 Field Sampling Standard Operating Procedures. Division of Water and Waste Management, Watershed Assessment Branch, Charleston, WV.

Yan L, Chen Z, Zhang Z, Qu C, Chen L, Shen D. 2013. Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles. The Analyst 138(15): 4280-4283.

Yang J, Wang Z, Li Y, Zhuang Q, Gu J. 2016. Real-time monitoring of dissolved oxygen with inherent oxygen-sensitive centers in metal–organic frameworks. Chemistry of Materials 28: 2652–2658.

Yusuf ZH. 2020. Phytoplankton as bioindicators of water quality in the Nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia 32.

Zhao Y, Liu L, Luo T, Hong L, Peng X, Austin RH, Qu J. 2018. A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging. Sensors and Actuators B: Chemical 269: 88–95.

Downloads

Published

2022-05-22

Issue

Section

Articles