Analisis Perbandingan Fluktuasi Produktivitas Primer Mingguan Kolam Beton dengan Kolam Tanah

Comparative Analysis of Weekly Primary Productivity Fluctuations of Concrete Ponds with Traditional Ponds

Authors

  • Attabik Mukhammad Amrillah Brawijaya University
  • Abd. Aziz Amin Brawijaya University
  • Lutfi Ni’matus Salamah Brawijaya University

DOI:

https://doi.org/10.21776/ub.jfmr.2024.008.03.13

Keywords:

Kolam Beton, Kolam Tanah, Kualitas Air, Produktivitas Primer, Earthen Ponds, Concrete Ponds, Primary Productivity, Water Quality

Abstract

Produktivitas primer merupakan indikator utama kesehatan ekosistem akuatik, karena mencerminkan kemampuan perairan dalam menghasilkan biomassa. Penelitian ini dilakukan di kolam budidaya ikan UPT Laboratorium Sumberpasir. Tujuan dari penelitian ini adalah untuk membandingkan profil mingguan produktifitas primer antara kolam beton dan kolam tanah dengan pengambilan sampel mingguan selama delapan minggu, dan mengukur parameter seperti suhu, pH, oksigen terlarut (DO), nitrat, fosfat, klorofil a. Metode pengukuran produktivitas primer diukur menggunakan metode botol terang dan botol gelap. Hasil pengukuran menunjukkan bahwa kolam beton cenderung mengalami fluktuasi yang lebih besar dalam suhu dan pH dibandingkan dengan kolam tanah. Suhu pada kolam beton lebih tinggi, sedangkan kolam tanah lebih stabil. Tingkat DO di kolam tanah juga lebih tinggi, menunjukkan ketersediaan oksigen yang lebih baik untuk organisme air. Kolam beton menunjukkan kadar nitrat yang lebih tinggi pada awal pengukuran, yang secara bertahap menurun. Sebaliknya, kadar nitrat pada kolam tanah lebih stabil, namun lebih rendah secara keseluruhan. Demikian pula, konsentrasi fosfat dan klorofil-a pada kolam beton umumnya lebih tinggi, produktivitas primer pada kolam tanah awalnya lebih tinggi, namun kolam beton menunjukkan peningkatan produktivitas primer pada titik-titik tertentu. Secara keseluruhan, penelitian ini menunjukkan bahwa kolam tanah cenderung memberikan lingkungan yang lebih stabil bagi ikan, sedangkan kolam beton dapat mendukung produktivitas primer yang lebih tinggi dengan manajemen nutrisi yang tepat. Hasil ini memberikan wawasan penting bagi praktik budidaya ikan dalam memaksimalkan produktivitas dengan memperhatikan karakteristik masing-masing jenis kolam.

 

Primary productivity serves as a principal indicator of the health of aquatic ecosystems, as it reflects the capacity of these ecosystems to produce biomass. The present study was conducted in the fish farming ponds of the Sumberpasir Laboratory. The objective of this study was to compare the weekly profile of primary productivity between concrete ponds and earthen ponds. To this end, samples were taken on a weekly basis for a period of eight weeks, and a range of parameters were measured, including temperature, pH, dissolved oxygen (DO), nitrate, phosphate, and chlorophyll a. The primary productivity measurement method employed was the light bottle and dark bottle method. The results of the measurements demonstrated that the concrete ponds exhibited greater fluctuations in temperature and pH compared to the earthen ponds. The temperature in the concrete ponds was observed to be higher, while the soil ponds demonstrated greater stability. Furthermore, the earthen ponds exhibited higher levels of dissolved oxygen (DO), which indicates enhanced oxygen availability for aquatic organisms. The initial nitrate levels in the concrete ponds were higher than those in the earthen ponds, but they subsequently decreased. In contrast, nitrate levels in the earthen ponds exhibited greater stability, although they were overall lower. Similarly, phosphate and chlorophyll-a concentrations in concrete ponds were generally higher, primary productivity in earthen ponds was initially higher, but concrete ponds showed increased primary productivity at certain points. Overall, this study suggests that earthen ponds tend to provide a more stable environment for fish, while concrete ponds can support higher primary productivity with propernutrient management. These results provide important insights for fish farming practices in maximizing productivity by considering the characteristics of each pond type.

References

[1] V. Lohani, T. K. Shah, B. Pant, R. N. Ram, V. K. Misra, dan C. P. Singh, “Estimation of primary productivity of aquaculture ponds with special reference to duration of desilting,” Journal of Krishi Vigyan, vol. 9, no. si, hlm. 85–89, 2020, doi: 10.5958/2349-4433.2020.00085.9.

[2] H. Yan dkk., “Variations in phytoplankton primary productivity in aquaculture ponds with Litopenaeus vannamei from subtropical estuary in southeast China,” Journal of Lake Sciences, vol. 34, no. 3, hlm. 881–893, 2022, doi: 10.18307/2022.0315.

[3] P. C. Das, S. Ayyappan, dan J. Jena, “Comparative changes in water quality and role of pond soil after application of different levels of organic and inorganic inputs,” Aquac Res, vol. 36, no. 8, hlm. 785–798, Jun 2005, doi: 10.1111/j.1365-2109.2005.01288.x.

[4] P. Jha, S. Barat, dan C. R. Nayak, “A comparison of growth, survival rate and number of marketable koi carp produced under different management regimes in earthen ponds and concrete tanks,” Aquaculture International, vol. 14, no. 6, hlm. 615–626, Nov 2006, doi: 10.1007/s10499-006-9059-9.

[5] R. C. Umaly dan L. A. Cuvin, Limnology: Laboratory and field guide,Physico-chemical factors, Biological factors. Metro Manila: National Book Store,Inc., 1988.

[6] J.-H. WU, C.-S. TANG, B. SHI, L. GAO, H.-T. JIANG, dan J. L. DANIELS, “Effect of Ground Covers on Soil Temperature in Urban and Rural Areas,” Environmental & Engineering Geoscience, vol. 20, no. 3, hlm. 225–237, Agu 2014, doi: 10.2113/gseegeosci.20.3.225.

[7] J. Rantala dan V. Leivo, “Heat loss into ground from a slab-on-ground structure in a floor heating system,” Int J Energy Res, vol. 30, no. 12, hlm. 929–938, Okt 2006, doi: 10.1002/er.1190.

[8] A. R. Vasilescu, A.-L. Fauchille, C. Dano, P. Kotronis, R. Manirakiza, dan P. Gotteland, “Impact of Temperature Cycles at Soil – Concrete Interface for Energy Piles,” 2019, hlm. 35–42. doi: 10.1007/978-3-319-99670-7_5.

[9] J. R. Maxted, C. H. McCready, dan M. R. Scarsbrook, “Effects of small ponds on stream water quality and macroinvertebrate communities,” N Z J Mar Freshwater Res, vol. 39, no. 5, hlm. 1069–1084, Sep 2005, doi: 10.1080/00288330.2005.9517376.

[10] M. C. Cuello, J. J. Cosgrove, A. Randhir, A. Vadiveloo, dan N. R. Moheimani, “Comparison of continuous and day time only mixing on Tetraselmis suecica (Chlorophyta) in outdoor raceway ponds,” J Appl Phycol, vol. 27, no. 5, hlm. 1783–1791, Okt 2015, doi: 10.1007/s10811-014-0420-5.

[11] J. S. Diana, J. P. Szyper, T. R. Batterson, C. E. Boyd, dan R. H. Piedrahita, “Water Quality in Ponds,” dalam Dynamics of POND Aquaculture, CRC Press, 2017, hlm. 53–71. doi: 10.1201/9780203759028-3.

[12] Mohammad Mustafizur Rahman, “Food web interactions and nutrients dynamics in polyculture ponds,” Wageningen University, 2006.

[13] Beatriz Torres Beristain, “Organic matter decomposition in simulated aquaculture ponds,” Wageningen University, 2005.

[14] T. Yagasaki, K. Iwahashi, S. Saito, dan I. Ohmine, “A theoretical study on anomalous temperature dependence of pKw of water,” J Chem Phys, vol. 122, no. 14, Apr 2005, doi: 10.1063/1.1878712.

[15] B. Elberling dan B. H. Jakobsen, “Soil solution pH measurements using in-line chambers with tension lysimeters,” Can J Soil Sci, vol. 80, no. 2, hlm. 283–288, Mei 2000, doi: 10.4141/S99-061.

[16] M. K. Mustapha, “Comparative Assessment of the Water Quality of Four Types of Aquaculture Ponds under Different Culture Systems,” Advanced Research in Life Sciences, vol. 1, no. 1, hlm. 104–110, Des 2017, doi: 10.1515/arls-2017-0017.

[17] K. Purdy dan I. A. Wright, “Impact of concrete on riparian ecosystems,” IOP Conf Ser Earth Environ Sci, vol. 344, no. 1, hlm. 012033, Okt 2019, doi: 10.1088/1755-1315/344/1/012033.

[18] I. A. Wright, P. J. Davies, S. J. Findlay, dan O. J. Jonasson, “A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters,” Mar Freshw Res, vol. 62, no. 12, hlm. 1355, 2011, doi: 10.1071/MF10296.

[19] I. PAUL, A. K. PANIGRAHI, dan S. DATTA, “Influence of Nitrogen Cycle Bacteria on Nitrogen Mineralisation, Water Quality and Productivity of Freshwater Fish Pond: A Review,” Asian Fish Sci, vol. 33, no. 2, Jun 2020, doi: 10.33997/j.afs.2020.33.2.006.

[20] K. Masuda dan C. E. Boyd, “Phosphorus Fractions in Soil and Water of Aquaculture Ponds Built on Clayey Ultisols at Auburn, Alabama,” J World Aquac Soc, vol. 25, no. 3, hlm. 379–395, Sep 1994, doi: 10.1111/j.1749-7345.1994.tb00222.x.

[21] J. Xu dkk., “The effect of novel aquaculture mode on phosphorus sorption-release in pond sediment,” Science of The Total Environment, vol. 905, hlm. 167019, Des 2023, doi: 10.1016/j.scitotenv.2023.167019.

[22] J.-S. Mok dkk., “Phosphorus Dynamics Associated With Organic Carbon Mineralization by Reduction of Sulfate and Iron in Sediment Exposed to Fish Farming,” Front Mar Sci, vol. 8, Sep 2021, doi: 10.3389/fmars.2021.645449.

[23] A. Hassan, “Zooplankton as natural live food for three different fish species under concrete ponds with mono-and polyculture conditions,” Egyptian Journal for Aquaculture, vol. 1, no. 1, hlm. 27–41, Mei 2011, doi: 10.21608/eja.2011.32040.

[24] H. Xiao dkk., “Landscape patterns are the main regulator of pond water chlorophyll α concentrations in subtropical agricultural catchments of China,” J Clean Prod, vol. 425, hlm. 139013, Nov 2023, doi: 10.1016/j.jclepro.2023.139013.

[25] P. Hartman, M. Kutý, D. Hlaváč, J. Regenda, dan P. Vejsada, “Calcium content in pond sediment and its effect on neutralizing capacity of water and fish production,” Aquaculture International, vol. 24, no. 6, hlm. 1747–1754, Des 2016, doi: 10.1007/s10499-016-0087-9.

Downloads

Published

2024-11-29

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.