Aplikasi Bakteri Probiotik Bacillus Spp. terhadap Pembentukan Biofilm dan Kualitas Air: Studi Eksperimental pada Media Kultur Budidaya Udang Vaname

Application of Probiotic Bacteria Bacillus Spp. on Biofilm Formation and Water Quality: an Experimental Study on Vaname Shrimp Cultury Media

Authors

DOI:

https://doi.org/10.21776/ub.jfmr.2025.009.01.2

Abstract

Penelitian ini bertujuan untuk mengeksplorasi pengaruh aplikasi probiotik Bacillus spp. terhadap pembentukan biofilm dan kualitas air pada media budidaya udang vaname (Litopenaeus vannamei). Penelitian dilakukan secara eksperimental menggunakan akuarium berkapasitas 12 liter yang dilengkapi substrat HDPE sebagai media pembentukan biofilm. Parameter kualitas air yang diamati meliputi suhu, pH, oksigen terlarut (DO), salinitas, dan amonia (NH₃). Pengukuran dilakukan secara berkala selama 168 jam. Hasil penelitian menunjukkan bahwa aplikasi probiotik Bacillus spp. secara signifikan memengaruhi penurunan kadar amonia dan peningkatan ketebalan biofilm. Suhu dan pH berada dalam kisaran optimal, yaitu 28–30°C dan 7,5–8,5, yang mendukung pertumbuhan udang vaname dan aktivitas probiotik. Penurunan kadar amonia terlihat sangat signifikan, dari kondisi awal 3,9 mg/L menjadi <1 mg/L pada perlakuan probiotik. Pembentukan biofilm yang signifikan pada substrat HDPE menunjukkan bahwa probiotik mendukung terciptanya habitat mikroorganisme yang stabil, sehingga efektif dalam proses degradasi senyawa toksik seperti amonia. Pembentukan biofilm yang stabil dan Bacillus spp. mendukung proses bioremediasi serta menjaga kualitas air, sehingga menciptakan lingkungan yang optimal untuk pertumbuhan dan produktivitas udang vaname. Stabilitas biofilm ini juga berperan dalam menjaga keseimbangan ekosistem mikroba pada media budidaya. Penelitian ini menegaskan bahwa aplikasi probiotik Bacillus spp. memiliki potensi dalam meningkatkan kualitas air dan mendukung pengelolaan limbah seperti amonia, dalam sistem budidaya udang vaname. Temuan ini menunjukkan bahwa probiotik Bacillus spp. berpotensi dalam mendukung produktivitas budidaya.

 

This study aims to explore the effect of probiotic Bacillus spp. application on biofilm formation and water quality in vaname shrimp (Litopenaeus vannamei) culture media. The study was conducted experimentally using a 12-liter aquarium equipped with HDPE substrate as a medium for biofilm formation. Water quality parameters observed included temperature, pH, dissolved oxygen (DO), salinity, and ammonia (NH₃). Measurements were taken periodically for 168 hours. The results showed that the application of probiotic Bacillus spp. significantly affected the decrease in ammonia levels and the increase in biofilm thickness. Temperature and pH were within the optimal range of 28-30°C and 7.5-8.5, which favored vaname shrimp growth and probiotic activity. A significant decrease in ammonia levels was observed, from the initial condition of 3.9 mg/L to <1 mg/L in the probiotic treatment. Significant biofilm formation on HDPE substrate indicates that probiotics support the creation of a stable microorganism habitat, making it effective in the degradation process of toxic compounds such as ammonia. Stable biofilm formation and Bacillus spp. support the bioremediation process and maintain water quality, creating an optimal environment for vaname shrimp growth and productivity. This biofilm stability also plays a role in maintaining the balance of the microbial ecosystem in the culture medium. This study confirms that the application of probiotic Bacillus spp. has a positive effect on the growth of vaname shrimp.

References

[1] Abuzar et al., “Potential industrial and nutritional applications of shrimp by-products: a review,” Int. J. Food Prop., vol. 26, no. 2, pp. 3407–3432, 2023, doi: 10.1080/10942912.2023.2283378.

[2] Z. Pramudia et al., “Profitability Analysis And Sensitivity Level Of White Shrimp ( Litopenaeus Vannamei ) Cultivation Using The Millennial Shrimp Farming (MSF) System,” ECSOFiM J. Econ. Soc. Fish. Mar. 2024. 11(02) 155-165, vol. 11, no. 02, pp. 155–165, 2024, [Online]. Available: http://dx.doi.org/10.21776/ub.ecsofim.2024.011.02.01%0Ae-ISSN:

[3] Z. Pramudia, A. R. Faqih, and A. Kurniawan, “Analysis of Growth and Water Quality Dynamics in vannamei white Shrimp (Litopenaeus vannamei) Cultivation Using the Millennial Shrimp Farming System in Indonesia,” Ecol. Environ. Conserv., vol. 28, no. 2, pp. 664–671, 2022, doi: 10.53550/eec.2022.v28i02.013.

[4] A. Kurniawan and C. Satrya Utama Dewi, “Studi Dinamika Bakteri Dan Kualitas Air Selama Proses Awal Bioflok,” J. Innov. Appl. Technol., vol. 4, no. 2, pp. 779–783, 2018, doi: 10.21776/ub.jiat.2018.004.02.9.

[5] R. Wang et al., “Effects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment,” AMB Express, vol. 10, no. 1, 2020, doi: 10.1186/s13568-020-01041-3.

[6] M. H. Khanjani, M. T. Mozanzadeh, E. Gisbert, and S. H. Hoseinifar, “Probiotics, prebiotics, and synbiotics in shrimp aquaculture: Their effects on growth performance, immune responses, and gut microbiome,” Aquac. Reports, vol. 38, no. May, p. 102362, 2024, doi: 10.1016/j.aqrep.2024.102362.

[7] A. Kurniawan and T. Yamamoto, “Biosorption of Lithium Using Biofilm Matrix of Natural Microbial Consortium,” Microbiol. Indones., vol. 9, no. 3, pp. 106–112, 2015, doi: 10.5454/mi.9.3.2.

[8] E. Sagir and S. Alipour, “Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges,” Renew. Sustain. Energy Rev., vol. 141, no. February, p. 110796, 2021, doi: 10.1016/j.rser.2021.110796.

[9] Y. Wei et al., “The exogenous compound bacteria alter microbial community and nutrients removal performance in the biofilm unit of the integrated aquaculture wastewater bioremediation systems,” Aquac. Reports, vol. 27, no. November, p. 101414, 2022, doi: 10.1016/j.aqrep.2022.101414.

[10] A. M. Catania, P. Di Ciccio, I. Ferrocino, T. Civera, F. T. Cannizzo, and A. Dalmasso, “Evaluation of the biofilm-forming ability and molecular characterization of dairy Bacillus spp. isolates,” Front. Cell. Infect. Microbiol., vol. 13, no. July, pp. 1–14, 2023, doi: 10.3389/fcimb.2023.1229460.

[11] K. U. Mahto, Vandana, M. Priyadarshanee, D. P. Samantaray, and S. Das, “Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability,” J. Clean. Prod., vol. 379, no. P2, p. 134759, 2022, doi: 10.1016/j.jclepro.2022.134759.

[12] N. Whangchai et al., “Effect of biogas sludge meal supplement in feed on growth performance molting period and production cost of giant freshwater prawn culture,” Chemosphere, vol. 301, no. March, p. 134638, 2022, doi: 10.1016/j.chemosphere.2022.134638.

[13] A. I. Farabi and H. Latuconsina, “Manajemen Kualitas Air pada Pembesaran Udang Vaname (Litopenaeus vannamei) di UPT. BAPL (Budidaya Air Payau dan Laut) Bangil Pasuruan Jawa Timur,” J. Ris. Perikan. Dan Kelaut., vol. 5, no. 1, pp. 1–13, 2023,[Online].Available:https://doi.org/10.33506/jrpk.v5ii.2097.

[14] E. Flores-Valenzuela, A. Miranda-Baeza, M. E. Rivas-Vega, V. Miranda-Arizmendi, O. Beltrán-Ramírez, and M. G. C. Emerenciano, “Water quality and productive response of Litopenaeus vannamei reared in biofloc with addition of commercial strains of nitrifying bacteria and Lactobacillus rhamnosus,” Aquaculture, vol. 542, no. May, 2021, doi: 10.1016/j.aquaculture.2021.736869.

[15] X. He, G. Abakari, H. Tan, W. LIU, and G. Luo, “Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system,” Aquaculture, vol. 566, no. June 2022, 2023, doi: 10.1016/j.aquaculture.2022.739216.

[16] I. M. Al Zamzami, Y. Kilawati, R. Ibdiah, and A. Kurniawan, “Analysis of Protein Profile and Functional Groups in Biofilms in the Hypersaline Environment,” J. Penelit. Pendidik. IPA, vol. 9, no. 12, pp. 11351–11358, 2023, doi: 10.29303/jppipa.v9i12.4464.

[17] M. N. Monier et al., “The effects of Bacillus species probiotics (Bacillus subtilis and B. licheniformis) on the water quality, immune responses, and resistance of whiteleg shrimp (Litopenaeus vannamei) against Fusarium solani infection,” Aquac. Int., vol. 31, no. 6, pp. 3437–3455, 2023, doi: 10.1007/s10499-023-01136-1.

[18] Y. Liu, A. Xu, C. Liu, M. Sun, and Z. Song, “Effects of Chlorella pyrenoidosa Supplementation on Water Quality, Shrimp Growth Performance, and Biofilm Bacterial Community Structure in Litopenaeus vannamei Aquaculture Systems,” Aquac. Res., vol. 2023, 2023, doi: 10.1155/2023/9120191.

[19] A. Kurniawan, Z. Pramudia, Y. T. Rahardjo, H. Julianto, and A. A. Amin, Kunci Sukses Budidaya Udang Vaname: Pengelolaan Akuakultur Berbasis Ekologi Mikroba. Malang: UB press, 2022.

[20] F. K. A. Kuebutornye, E. D. Abarike, and Y. Lu, “A review on the application of Bacillus as probiotics in aquaculture,” Fish Shellfish Immunol., vol. 87, no. November 2018, pp. 820–828, 2019, doi: 10.1016/j.fsi.2019.02.010.

[21] F. Llario, L. A. Romano, M. Rodilla, M. T. Sebastiá-Frasquet, and L. H. Poersch, “Application of Bacillus amyloliquefaciens as probiotic for Litopenaeus vannamei (Boone, 1931) cultivated in a biofloc system,” Iran. J. Fish. Sci., vol. 19, no. 2, pp. 904–920, 2020, doi: 10.22092/ijfs.2018.117852.

[22] E. Rurangwa and M. C. J. Verdegem, “Microorganisms in recirculating aquaculture systems and their management,” Rev. Aquac., vol. 7, no. 2, pp. 117–130, 2015, doi: 10.1111/raq.12057.

[23] A. Kurniawan, Z. Pramudia, Y. A. D. Susanti, I. M. Al Zamzami, and T. Yamamoto, “Comparative Biosorption Proficiency in Intact and Autoclaved Biofilm Matrices,” J. Ecol. Eng., vol. 25, no. 4, pp. 131–141, 2024, doi: 10.12911/22998993/183943.

[24]A. Kurniawan, K. Suardita, and N. Zubaidah, “Perbedaan Perlekatan Biofilm Streptococcus mutans pada Resin Komposit Nanofil Tipe Universal Restortive dan Flowable Restorative,” Conserv. Dent. J., vol. 7, no. 2, p. 102, 2019, doi: 10.20473/cdj.v7i2.2017.102-110.

Downloads

Published

2025-03-25