Efektifitas Tingkat Pencahayaan Terhadap Pertumbuhan Ikan Nemo (Amphiprion ocellaris)
Effectiveness of Lighting Intensities on Growth of Clown Anemonefish (Amphiprion ocellaris)
DOI:
https://doi.org/10.21776/ub.jfmr.2024.008.03.4Keywords:
Ikan Nemo, Intensitas Cahaya, Lux, Pertumbuhan, Clown Anemonefish, Growth Performance, Light IntensitiesAbstract
Amphiprion ocellaris merupakan salah satu jenis ikan hias yang terkenal di tengah masyarakat Indonesia. Ikan ini dikenal dengan nama ikan nemo, dan digemari karena keindahan warna dan bentuknya yang menggemaskan. Selain kualitas air, tingkat pencahayaan merupakan faktor yang diduga cukup berperan penting dalam hidup ikan nemo. Penelitian ini bertujuan untuk melihat pengaruh cahaya buatan dengan intensitas berbeda terhadap parameter pertumbuhan dan laju sintasan ikan nemo. Penelitian dilakukan di Laboratorium Hatchery, Politeknik Perikanan Negeri, Tual pada Bulan November - Desember 2023. Ikan nemo sebanyak 30 ekor (jantan dan betina) dengan panjang dan berat awal masing-masing 35±2 mm dan 0,41±0,04 g dipelihara selama 35 hari dan diberikan makan dua kali sehari. Rangkaian penelitian disusun menggunakan Rancangan Acak Lengkap (RAL) dengan lima perlakuan intensitas cahaya berbeda (0, 300, 400, 500, dan 600 lux) dan tiga kali ulangan. Hasil ANOVA dan uji lanjut Duncan secara umum menggambarkan penambahan cahaya dengan intensitas berbeda tidak cukup memberikan pengaruh signifikan terhadap pertumbuhan panjang dan berat mutlak (Lm dan Wm), SGR, serta SR. Cahaya hanya berpengaruh signifikan pada pertumbuhan panjang mutlak dan SGR ikan nemo betina, tepatnya minggu pengamatan ke-1 dan 2 (fase awal pertumbuhan). Pertumbuhan ikan nemo paling baik diperoleh pada lingkungan tanpa cahaya tambahan (0 lux). Kondisi ini menjelaskan bahwa ikan nemo lebih menyukai lingkungan dengan pencahayaan natural. Pengaruh signifikan cahaya pada ikan nemo betina menjelaskan bahwa pola pertumbuhan tubuhnya yang bersifat alometrik positif, sehingga memiliki ciri fenotip lebih gemuk (montok) dari ikan nemo jantan dengan pola pertumbuhan alometrik negatif.
Amphiprion ocellaris is one of the most popular ornamental fish and is known as clown anemonefish. It is popular because of its beautiful color and adorable shape. In addition to water quality, light intensity is a factor that is assumed to play an essential role. This study aims to investigate the effect of artificial light with different intensities on growth parameters and survival rate of clown anemonefish. This study, was performed in the Hatchery Laboratory, State Fisheries Polytechnic of Tual (November - December 2023). There were 30 fish (male and female) with length and initial weight of 35±2 mm and 0.41±0.04 g, respectively reared for 35 days and fed twice a day. The studies were arranged using a Completely Randomized Design (CRD) with five different light intensities (0, 300, 400, 500, and 600 lux) and replicated three times. The results of ANOVA and Duncan's multiple further tests illustrated commonly, that different light intensities did not significantly affect the absolute length and weight growth, SGR, and SR. Different light intensives, only showed a significant impact on absolute length growth and SGR clown anemonefish female, precisely in the first and second observation weeks (early growth phase). The best growth was in an environment with no additional light (0 lux). This condition explains that fish prefer an environment with natural lighting. The significant effect in female clown anemonefish is that their body growth pattern is positive allometric and thus makes the female fatter (plump) than the male with a negative allometric growth pattern.
References
[1] Boyer S. Amphiprion ocellaris 2024.
[2] Clownfish. Gt Barrier Reef Found 2024. https://www.barrierreef.org/the-reef/animals/clownfish (accessed April 9, 2024).
[3] Alves RRN, Lechner W. Wildlife Attractions: Zoos and Aquariums. In: Alves RRN, Albuquerque UP, editors. Ethnozoology Anim. our Lives, Elsevier Inc.; 2018, p. 351–61. https://doi.org/10.1016/B978-0-12-809913-1.00019-3.
[4] Alves RRN, Rocha LA. Fauna at Home: Animals as Pets. In: Alves RRN, Albuquerque UP, editors. Ethnozoology Anim. our Lives, Brazil: Elsevier Inc.; 2018, p. 303–21. https://doi.org/10.1016/B978-0-12-809913-1.00016-8.
[5] Madduppa HH, von Juterzenka K, Syakir M, Kochzius M. Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia. Ocean Coast Manag 2014;100:41–50. https://doi.org/10.1016/j.ocecoaman.2014.07.013.
[6] Fitrinawati H, Utami ES. Growth Performance of White Snapper (Lates calcarifer) in Floating Cage System, Tual, Maluku. J Fish Sci Innov 2023;7:158–65. https://doi.org/10.33772/jsipi.v7i2.430.
[7] Porter MJR, Duncan NJ, Mitchell D, Bromagea NR. The use of cage lighting to reduce plasma melatonin in Atlantic salmon (Salmo salar) and its effects on the inhibition of grilsing. Aquaculture 1999;176:237–44. https://doi.org/10.1016/S0044-8486(99)00113-1.
[8] Boeuf G, Le Bail PY. Does light have an influence on fish growth? Aquaculture 1999;177:129–52. https://doi.org/10.1016/S0044-8486(99)00074-5.
[9] Sugiyono. Metode Penelitian Kuantitatif, Kualitatif, dan R&D. 4th ed. Bandung, Indonesia: Alfabeta; 2008.
[10] Safitri N. Pengaruh Tingkat Intensitas Cahaya Terhadap Performa Pertumbuhan Larva Ikan Gabus Channa striata. IPB, Bogor, 2014.
[11] Bianingrum. Perbedaan Intensitas Cahaya Terhadap Performa Pertumbuhan dan Sintasan Benih Ikan Sepat Siam Trichopodus pectoralis. IPB, Bogor, 2015.
[12] Yasir I, Qin and J. Effects of photoperiod on growth of larvae and juveniles of the anemonefish Amphiprion melanopus. J World Aquac Soc 2009;40:337–50. https://doi.org/10.1111/J.1749-7345.2009.00254.X.
[13] Divya SP, Thangappan T, Kumar ATT, Rajasekaran R, Balasubramanian T. Larval rearing of clownfish using Brachionus plicatilis rotifer as starter food. Environ Sci Agric Food Sci 2011;37:179–185. https://doi.org/10.2306/scienceasia1513-1874.2011.37.179.
[14] Velasco-Blanco G, González CAÁ, Parra MIA de la, Rodríguez-Ibarra LE, Ibarra-Castro L, Maytorena-Verdugo CI, et al. Ontogeny of digestive enzymes in clown anemonefish larvae, Amphiprion ocellaris (Perciformes: Pomacentridae). Rev Biol Trop 2023;71:1–12. https://doi.org/10.15517/rev.biol.trop..v71i1.51085.
[15] Gaspersz V. Metode Perancangan Percobaan. 3rd ed. Bandung, Indonesia: Armico; 1994.
[16] Duncan DB. Multiple Range and Multiple F Tests Stable. Biometrics 1955;11:1–42. https://doi.org/10.2307/3001478.
[17] Hopkins KD. Reporting Fish Growth: A Review of the Basics. J World Aquac Soc 1992;23:173–9. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x.
[18] Shaughnessy CA, Balfry SK, Bystriansky JS. The isosmotic point as critical salinity limit for growth and osmoregulation, but not survival, in the wolf eel Anarrhichthys ocellatus. Fish Physiol Biochem 2022;48:471–80. https://doi.org/10.1007/s10695-022-01064-6.
[19] Effendie MI. Biologi Perikanan. 2nd ed. Yogyakarta: Yayasan Pustaka Nusatama; 2002.
[20] Ricker WE. Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Canada 1975;191:382. https://doi.org/10.1038/108070b0.
[21] Kusumawati D, Permana S, Setiawati KM, Haryanti. Peran gen aim1 dan intensitas cahaya terhadap karakter pola pigmen ikan badut hitam (Amphiprion percula). J Ris Akuakultur 2012;7:205–19. https://doi.org/10.15578/jra.7.2.2012.205-219.
[22] Barahona-Fernandes MH. Some effects of light intensity and photoperiod on the sea bass larvae (Dicentrarchus labrax (L.)) reared at the Centre Oceanologique de Bretagne. Aquaculture 1979;17:311–21. https://doi.org/10.1016/0044-8486(79)90086-3.
[23] Wu L, Wang Y, Li J, Song Z, Xu S, Song C, et al. Influence of light spectra on the performance of juvenile turbot (Scophthalmus maximus). Aquaculture 2021;533. https://doi.org/10.1016/j.aquaculture.2020.736191.
[24] Ruchin AB. Environmental colour impact on the life of lower aquatic vertebrates: development, growth, physiological and biochemical processes. Rev Aquac 2020;12:310–27. https://doi.org/10.1111/raq.12319.
[25] Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sánchez-Vázquez FJ. Effects of light during early larval development of some aquacultured teleosts: A review. Aquaculture 2011;315:86–94. https://doi.org/10.1016/j.aquaculture.2010.10.036.
[26] Dadfar F, Bahaoddini A, Esmaeili HR, Fopp-Bayat D. The effects of different artificial light colours on the growth rate of embryo and juvenile rainbow trout Oncorhynchus mykiss (Walbaum, 1792). Polish J Nat Sci 2017;32:179–89.
[27] Montajami S, Nkoubin H, Mirzaie FS, Sudagar M. Influence of Different Artificial Colors of Light on Growth Performance and Survival Rate of Texas Cichlid Larvae (Herichthys cyanoguttatus). World J Zool 2012;7:232–5. https://doi.org/10.5829/idosi.gv.2012.9.3.6568.
[28] Villamizar N, García-Alcazar A, Sánchez-Vázquez FJ. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 2009;292:80–6. https://doi.org/10.1016/j.aquaculture.2009.03.045.
[29] Ullmann JFP, Gallagher T, Hart NS, Barnes AC, Smullen RP, Collin SP, et al. Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer). Aquaculture 2011;322–323:235–40. https://doi.org/10.1016/j.aquaculture.2011.10.005.
[30] Shin HS, Lee J, Choi CY. Effects of LED light spectra on the growth of the yellowtail clownfish Amphiprion clarkii. Fish Sci 2012;78:549–56. https://doi.org/10.1007/s12562-012-0482-8.
[31] Rahmawati AAP, Hudaidah S, Wijayanti H. Pengaruh intensitas cahaya selama pemeliharaan benih ikan kerapu macan. E-Jurnal Rekayasa Dan Teknol Budid Perair 2016;5:547–58.
[32] García LN, Marín AF, Chapman FA. Effects of different color artificial lights on growth, survival, and sex ratio on an experimental population of freshwater ornamental emperor tetra fish Nematobrycon palmeri. AACL Bioflux 2020;13:1048–54.
[33] Aly HA, Abdel Rahim MM, Lotfy AM, Abdelaty BS. Impact of Different Colors of Artificial Light on Pigmentation and Growth Performance of Hybrid Red Tilapia (Oreochromis mosambicus × O. hornorum) Reared in Saline Well Water. J Mar Sci Res Dev 2017;7:1–9. https://doi.org/10.4172/2155-9910.1000229.
[34] Tamazouzt L, Chatain B, Fontaine P. Tank wall colour and light level affect growth and survival of Eurasian perch larvae (Perca fluviatilis L.). Aquaculture 2000;182:85–90. https://doi.org/10.1016/S0044-8486(99)00244-6.
[35] Tielmann M. The effect of out-of-season production and light regime manipulation for intensive pike-perch (Sander lucioperca) larvae culture. Christian Albrechts University, Germany, 2018.
[36] Malison JA, Held JA. Effect of fish size at harvest, initial stocking density and tank lighting conditions on the habituation of pond-reared yellow perch (Perca flavecens) to intensive culture conditions. Aquaculture 1992;104:67–78.
[37] Khoo ML, Das SK, Ghaffar MA. Growth pattern, diet and reproductive biology of the clownfish Amphiprion ocellaris in waters of Pulau Tioman, Malaysia. Egypt J Aquat Res 2018;44:233–9. https://doi.org/10.1016/j.ejar.2018.07.003.
[38] Utami ES, Wijayanti A, Qulubi M. Pola Pertumbuhan dan faktor kondisi ikan kurisi (Nemipterus japonicus) di perairan Labuhan Maringgai, Lampung. Juvenil 2024;5:27–33.
[39] Kilmanun JE, Fitrinawati H, Utami ES. Pola pertumbuhan dan faktor kondisi ikan giru (Amphiprion ocellaris). JSIPi 2024;8:46–52. https://doi.org/10.33772/jsipi.v8i1.511.
[40] Menteri-Lingkungan-Hidup. Keputusan Menteri Negara Lingkungan Hidup Nomor 51 Tahun 2004 Tentang Baku Mutu Air Laut. Indonesia: 2004.
[41] Velasco-Blanco G, Re AD, Díaz F, Ibarra-Castro L, Abdo de la Parra MI, Rodríguez-Ibarra LE, et al. Thermal preference, tolerance, and thermal aerobic scope in clownfish Amphiprion ocellaris (Cuvier, 1830) predict its aquaculture potential across tropical regions. Int Aquat Res 2019;11:187–97. https://doi.org/10.1007/s40071-019-0228-7.
[42] Syazili A, Samadan GM, Ahmad K, Senen J, Irfan M. Effect of increasing temperature on growth performance and survival rate clownffish (Ampihiprion ocellaris). AGRIKAN - J Fish Agribus 2022;15:683–8.
[43] Zannotti M, Giovannetti R. Kinetic evidence for the effect of salts on the oxygen solubility using laboratory prototype aeration system. J Mol Liq 2015;211:656–66. https://doi.org/10.1016/j.molliq.2015.07.063.
[44] Sari OV, Hendrarto B, Sordarsono P. Pengaruh variasi jenis makanan terhadap ikan karang nemo (Amphiprion ocellaris Cuvier, 1830) ditinjauu dari perubahan warna, pertumbuhan dan tingkat kelulushidupan.No Title. Diponegoro J Maquares 2014;3:134–43.
[45] Lakani BF, Sattari M, Falahatkar B. Effect of different oxygen levels on growth performance, stress response and oxygen consumption in two weight groups of great sturgeon Huso huso. Iran J Fish Sci 2013;12:533–49.
[46] Utami ES, Hariyadi S, Effendi H, Kamal MM, Bengtson DA. Vertical temperature and dissolved oxygen distribution related to floating cage activity in Cirata Reservoir, West Java. Asian-Pacific Aquac. Conf., Surabaya, Indonesia: 2016.
[47] Insivitawati E, Hakimah N, Chudlori MS. Effect of temperature, pH, and salinity on body weight of Asian Seabass (Lates calcarifer) at different stockings. IOP Conf Ser Earth Environ Sci 2022;1036:6–11. https://doi.org/10.1088/1755-1315/1036/1/012117.
[48] Shuang-Yao W, Zhi-Qiang J, Ming-Guang M, Shou-Kang M, Yang S, You-Zhen S. Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus. Iran J Fish Sci 2018;17:675–89. https://doi.org/10.22092/ijfs.2018.116814.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.