IMPLEMENTASI WEB CRAWLING UNTUK MENGUMPULKAN TWEETS TERKAIT PRODUK PERIKANAN OLAHAN YANG DIMINATI MASYARAKAT
IMPLEMENTATION OF WEB CRAWLING TO COLLECT POPULAR TWEETS ABOUT PROCESSED FISHERY PRODUCTS
DOI:
https://doi.org/10.21776/ub.jfmr.2023.007.02.3Keywords:
Ikan, Pemasaran Online, Produk, Twitter, E-Marketing, Fish, ProductAbstract
Saat ini penggunaan media sosial sebagai sarana pemasaran banyak dilakukan oleh Usaha Mikro, Kecil, dan Menengah (UMKM) untuk mempromosikan produk perikanan. Penggunaan teknologi informasi yang optimal dapat meningkatkan akses pasar untuk promosi digital. Salah satu cara memprediksi produk yang diminati adalah dengan mengetahui produk perikanan olahan yang banyak diperbincangkan pada media sosial. Penelitian ini bertujuan untuk menganalisis data produk perikanan olahan yang popular di sosial media Twitter dengan kata kunci ikan. Pengambilan data opini masyarakat menggunakan teknik web crawling melalui Application Programming Interface (API) Twitter yaitu melakukan pencarian data tweets (kicauan) sesuai kata kunci. Selanjutnya metode pre-processing text mining digunakan mengolah data kicauan yang telah didapat dari media sosial twitter. Hasil distribusi frekuensi menunjukkan bahwa kemunculan kata terkait ikan terbanyak yaitu sambel (338 kata), sambal (330 kata), kerupuk (167 kata), krupuk (147 kata), tepung (136 kata), dan minyak (102 kata). Rekomendasi yang diberikan untuk promosi melalui Twitter adalah pihak pemasaran bisa menambahkan kata yang hampir mirip ketika mempromosikan produk misalnya sambal dengan sambel disebutkan bersamaan dalam satu tweet. Penggunaan kata yang sesuai ini terkait branding produk pada pemasaran online yaitu bagaimana penjual membangun citra kepada konsumen agar produknya dikenal masyarakat dengan memperhatikan penggunaan kata kunci produk olahan perikanan yang sering dibahas di Twitter.
Currently, the use of social media as a marketing tool is carried out by Small and Medium-sized enterprises (SMEs) to promote fishery products. Optimal use of information technology can increase market for digital promotion. The products are the most talked means consumers are more interested. This study provides insight of processed fishery product that is popular on Twitter. Collecting public opinion data using a web crawling technique through the Twitter API, which is search for tweets using fish as a keyword. Furthermore, the pre-processing text mining method used to process the tweets that has been obtained from the Twitter. The distribution results shows that the most occurrences of words that relate to fish are sambel (338 words), sambal (330 words), kerupuk (167 words), krupuk (147 words), tepung (136 words), and minyak (102 words). Recommendation for promotion through Twitter is seller can add words that are almost similar when promote their products, such as sambal with sambel together in one tweet. The use of this appropriate word is related to product branding in e-marketing. It is means that the product is known to the public by use of fishery product keywords that are often discussed on Twitter.
References
AntaraNews, “KKP Siapkan 500 Produk UMKM Perikanan Dalam Gerakan Bangga Buatan RI,” 26 Juli 2020, 2020. https://www.antaranews.com/berita/1633638/kkp-siapkan-500-produk-umkm-perikanan-dalam-gerakan-bangga-buatan-ri.
S. Kemp, “DIGITAL 2020: INDONESIA,” 18 Februari 2020, 2020. https://datareportal.com/reports/digital-2020-indonesia.
M. C. Gabbyella, “Strategi Penggunaan Media Sosial Sebagai Sarana Pemasaran Untuk UKM (Usaha Kecil dan Menengah) Menggunakan AIDA Model,” Universitas Brawijaya, 2016.
E. S. Setiyorini, B. P. Noorachmat, and M. Syamsun, “Strategi Pemasaran Produk Olahan Hasil Perikanan pada UMKM Cindy Group,” Manaj. IKM J. Manaj. Pengemb. Ind. Kecil Menengah, vol. 13, no. 1, p. 19, 2018, doi: 10.29244/mikm.13.1.19-28.
V. Ndatangara, M. E. Fachry, and S. S. Adhawati, “Marketing Analysis of Processed Fishery Products using Interactive Media,” Int. J. Environ. Agric. Biotechnol., vol. 4, no. 4, pp. 1099–1102, 2019, doi: 10.22161/ijeab.4432.
I. S. Djunaidah, “Tingkat konsumsi ikan di indonesia,” J. Penyul. Perikan. dan Kelaut., vol. 11, no. 1, pp. 12–24, 2017.
M. Y. Nur and D. D. Santika, “Analisis Sentimen pada Dokumen berbahasa Indonesia dengan pendekatan Support Vector Machine,” Konf. Nas. Sist. dan Inform., vol. 12 Novembe, pp. 9–14, 2011.
Twitter, “About the Twitter API,” 2021. https://developer.twitter.com/en/docs/twitter-api/getting-started/about-twitter-api (accessed Sep. 08, 2021).
A. Lawrence, “API: Pengertian, Fungsi, dan Cara Kerjanya,” 2020. https://www.niagahoster.co.id/blog/api-adalah/ (accessed Sep. 08, 2021).
R. Hanifah and I. S. Nurhasanah, “Implementasi Web Crawling Untuk Mengumpulkan Web Crawling Implementation for Collecting,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 531–536, 2018, doi: 10.25126/jtiik20185842.
S. M. Kim and Y. G. Ha, “Automated discovery of small business domain knowledge using web crawling and data mining,” 2016 Int. Conf. Big Data Smart Comput. BigComp 2016, pp. 481–484, 2016, doi: 10.1109/BIGCOMP.2016.7425974.
J. Strauss and R. Frost, E-Marketing, 6th ed. London: Pearson, 2012.
E. Pantano, C. V. Priporas, and G. Migliano, “Reshaping traditional marketing mix to include social media participation: Evidence from Italian firms,” Eur. Bus. Rev., vol. 31, no. 2, pp. 162–178, 2019, doi: 10.1108/EBR-08-2017-0152.
L. Kwok, Y. Tang, and B. Yu, “The 7 Ps marketing mix of home-sharing services: Mining travelers’ online reviews on Airbnb,” Int. J. Hosp. Manag., vol. 90, no. August 2019, p. 102616, 2020, doi: 10.1016/j.ijhm.2020.102616.
S. Gunawan, A. Subarkah, and W. Tambunan, “Analisis Strategi Pemasaran Produk Kerupuk Rumput Laut Pada Pusat Pelatihan Mandiri Kelautan Dan Perikanan (P2MKP) Kota Balikpapan Kalimantan Timur,” Matrik J. Manaj. Tek. Ind. - Produksi, vol. 21, no. 1, pp. 9–18, 2020, doi: 10.30587/matrik.v21i1.1135.
S. Sumiyati and Z. Bahri, “Pemberdayaan dan Pendampingan Masyarakat Melalui Pelatihan Pembuatan dan Pemasaran Online Produk Olahan Hasil Alam dan Budidaya Perikanan di Desa Tanjung Kabupaten Sekadau,” J. Bul. Al-Ribaath, vol. 17, no. 2, p. 110, 2020, doi: 10.29406/br.v17i2.2393.
P. Kotler and K. L. Keller, Prinsip-Prinsip Pemasaran. Jakarta: Erlangga, 2011.
A. Samoggia, A. Bertazzoli, and A. Ruggeri, “Food retailing marketing management : social media communication for healthy food,” Int. J. Retail Distrib. Manag., vol. 47, no. 9, pp. 928–956, 2019, doi: 10.1108/IJRDM-08-2018-0178.
B. Jeong, J. Yoon, and J. Lee, “Social media mining for product planning : A product opportunity mining approach based on topic modeling and sentiment analysis,” Int. J. Inf. Manage., vol. 48, pp. 280–290, 2019, doi: 10.1016/j.ijinfomgt.2017.09.009.
H. Shirdastian, M. Laroche, and M. Richard, “Using big data analytics to study brand authenticity sentiments : The case of Starbucks on Twitter,” Int. J. Inf. Manage., vol. 48, no. April 2017, pp. 291–307, 2019, doi: 10.1016/j.ijinfomgt.2017.09.007.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.