Estimasi Stok Karbon Sedimen pada Padang Lamun di Pulau Kedumpit, Teluk Balikpapan Provinsi Kalimantan Timur

Estimation of Seagrass Sediment Carbon Stock in Kedumpit Island, Balikpapan Bay, East Kalimantan Province

Authors

DOI:

https://doi.org/10.21776/ub.jfmr.2025.009.01.11

Keywords:

Pulau Kedumpit, Lamun, Sedimen, Stok Karbon, Kedumpit Island, Seagrass, Sediment, Carbon Stock

Abstract

Investigasi terhadap kondisi lamun di perairan Teluk Balikpapan telah dilakukan, namun perhitungan stok karbon di sedimen lamun yang berada di perairan estuari tersebut belum tersedia. Penelitian ini bertujuan untuk mengestimasi cadangan karbon pada sedimen lamun di Pulau Kedumpit yang berlokasi di Teluk Balikpapan, Kalimantan Timur. Masing-masing sampel sedimen diambil pada 3 titik stasiun yang berbeda, dengan titik stasiun (0, 50 dan, 100 meter) dari daerah lamun yang dekat dengan dataran menuju ke arah laut. Pengambilan sampel sedimen menggunakan pipa PVC berdiameter 2,5 inch dengan kedalaman sampel 0 – 50 cm dan dipotong dengan interval 5 cm. Kandungan karbon organik dianalisis dengan metode Loss on Ignition (LoI). Hasil studi menemukan terdapat dua jenis lamun yaitu Halodule sp. dan Halophila sp. Berdasarkan visualisasi sampel sedimen bahwa jenis substrat di lokasi penelitian cenderung pasir berlumpur. Konsentrasi karbon organik sedimen pada tiga stasiun berkisar antara 0,34-2,64% dengan rata-rata 1,24±0,37 %. Nilai stok karbon sedimen per lapisan sedimen berkisar 63 hingga 114 MgC/ha dan rata-rata total simpanan karbon sebesar 95±27,6 MgC/ha pada kedalaman sedimen 0-50 cm. Terdapat perbedaan yang signifikan pada nilai bulk density, karbon organik sedimen, dan stok karbon dalam sedimen (p-value < 0,05) antar stasiun dan kedalaman.

 

Seagrass in Balikpapan Bay estuary already investigated, however its carbon stock have not been measured. The objective of this study was to estimate the carbon stock in seagrass sediments in Kedumpit Island, located in Balikpapan Bay estuary. Each sediment sample was taken at 3 different sites (0, 50 and 100 meters) from the seagrass area near to the land towards the sea. Sediment samples were taken using a 2.5 inch diameter PVC core with a depth of 0 - 50 cm and were sliced at 5 cm interval. Organic carbon content was analysed using the Loss On Ignition (LOI) method. Study results showed that two seagrass species were found in the study site, such as Halodule sp and Halophila sp. Based on visual observation at sediment samples, the substrate type in the study site tends to be muddy sand. Sediment organic carbon concentration at three stations ranged from 0.34-2.64%, with average at 1,24±0,37%%. Sediment carbon stock values of sediment layers ranged from 63 to 114 MgC/ha and the total average carbon storage was 95±27,6 MgC/ha. The value of bulk density, sediment organic carbon, and carbon stock in sediment were significantly different (p-value < 0.05) between the sites and the depth of sediment layers.

References

[1] C. Nellemann et al., Blue carbon: A Rapid Response Assessment. Norway: Birkeland Trykkeri AS, 2009.

[2] J. Howard, S. Hoyt, K. Isensee, M. Telszewski, and E. Pidgeon, Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses. Arlington, Virginia, USA.: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014.

[3] E. McLeod et al., “A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2,” Frontiers in Ecology and the Environment, vol. 9, no. 10, pp. 552–560, 2011, doi: 10.1890/110004.

[4] M. Stankovic et al., “Blue carbon assessments of seagrass and mangrove ecosystems in South and Southeast Asia: Current progress and knowledge gaps,” Science of the Total Environment, vol. 904, no. August, 2023, doi: 10.1016/j.scitotenv.2023.166618.

[5] A. J. Wahyudi et al., “Potensi Cadangan Dan Serapan Karbon Ekosistem Mangrove dan Padang Lamun Indonesia. Intisari Bagi Pengambil Kebijakan,” Jakarta, 2018.

[6] A. F. Sakmiana, M. S. Paputungan, and W. Kusumaningrum, “Estimasi Konsentrasi dan Stok Karbon Organik pada Sedimen Lamun di Desa Selangan , Kalimantan Timur,” vol. 12, no. 3, pp. 483–492, 2023.

[7] Y. M. Ambomasse, A. Irawan, and M. S. Paputungan, “The Estimation of Carbon Stock in Seagrass Biomass of Kedindingan Island, East Kalimantan,” vol. 8, pp. 1–14, 2024.

[8] N. Latifah et al., “Seagrass Blue Carbon Stock and Air – Sea CO 2 Fluxes in the Monsoon Season,” 2023.

[9] T. Miyajima et al., “Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows,” Global Biogeochemical Cycles, vol. 29, no. 4, pp. 397–415, Apr. 2015, doi: 10.1002/2014GB004979.

[10] H. H. De Iongh, W. Kiswara, W. Kustiawan, and P. E. Loth, “A review of research on the interactions between dugongs (Dugong dugon Müller 1776) and intertidal seagrass beds in Indonesia,” Hydrobiologia, vol. 591, no. 1, pp. 73–83, 2007, doi: 10.1007/s10750-007-0785-4.

[11] A. A. Budiarsa, H. H. De Iongh, W. Kustiawan, and P. M. van Bodegom, “Dugong foraging behavior on tropical intertidal seagrass meadows: the influence of climatic drivers and anthropogenic disturbance,” Hydrobiologia, vol. 848, no. 18, pp. 4153–4166, 2021, doi: 10.1007/s10750-021-04583-0.

[12] S. Rahmawati et al., Blue Carbon in Seagrass Ecosystem-Guideline for the Assessment of Carbon Stock and Sequestration in Southeast Asia Contributors: Yogyakarta: Gadjah Mada University Press, 2019.

[13] Q. Wang, Y. Li, and Y. Wang, “Optimizing The Weight Loss-on-ignition Methodology to Quantify Organic and Carbonate Carbon of Sediments From Diverse Sources,” Environmental Monitoring and Assessment, vol. 174, no. 1–4, pp. 241–257, 2011, doi: 10.1007/s10661-010-1454-z.

[14] J. W. Fourqurean et al., “Seagrass Ecosystems as A Globally Significant Carbon Stock,” Nature Geoscience, vol. 5, no. 7, pp. 505–509, 2012, doi: 10.1038/ngeo1477.

[15] I. T. Sombo, Wiryanto., and Sunarto., “Karakteristik dan Struktur Komunitas Lamun Di Daerah Intertidal Pantai Litianak dan Pantai Oeseli Kabupaten Rote Ndao Nusa Tenggara Timur,” Jurnal Ekosains, vol. IX, no. 2, pp. 33–44, 2016.

[16] Y. P. Rahayu et al., “The Sources of Organic Matter in Seagrass Sediments and Their Contribution to Carbon Stocks in the Spermonde Islands, Indonesia,” Aquatic Geochemistry, vol. 25, no. 3–4, pp. 161–178, Aug. 2019, doi: 10.1007/s10498-019-09358-7.

[17] G. A. Juma, A. M. Magana, G. N. Michael, and J. G. Kairo, “Variation in Seagrass Carbon Stocks Between Tropical Estuarine and Marine Mangrove-Fringed Creeks,” Frontiers in Marine Science, vol. 7, no. August, pp. 1–11, 2020, doi: 10.3389/fmars.2020.00696.

[18] H. Kennedy et al., “Seagrass sediments as a global carbon sink: Isotopic constraints,” Global Biogeochemical Cycles, vol. 24, no. 4, pp. 1–8, 2010, doi: 10.1029/2010GB003848.

[19] G. Chen et al., “Mangroves as a major source of soil carbon storage in adjacent seagrass meadows,” Nature Publishing Group, no. February, pp. 1–10, 2017, doi: 10.1038/srep42406.

[20] G. Chen et al., “Mangroves as A Major Source of Soil Carbon Storage in Adjacent Seagrass Meadows,” Scientific Reports, vol. 7, p. 42406, 2017, doi: 10.1038/srep42406.

[21] M. Kida et al., “Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand),” Science of the Total Environment, vol. 801, p. 149682, 2021, doi: 10.1016/j.scitotenv.2021.149682.

[22] R. S. Hatton, R. D. DeLaune, and W. H. Patrick, “Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana,” Limnology and Oceanography, vol. 28, no. 3, pp. 494–502, 1983, doi: 10.4319/lo.1983.28.3.0494.

[23] H. Wang et al., “Determining the Spatial Variability of Wetland Soil Bulk Density, Organic Matter, and the Conversion Factor between Organic Matter and Organic Carbon across Coastal Louisiana, U.S.A.,” Journal of Coastal Research, vol. 33, no. 3, pp. 507–517, 2017, doi: 10.2112/JCOASTRES-D-16-00014.1.

[24] P. R. Hertyastuti, R. D. Putra, T. Apriadi, M. P. Suhana, F. Idris, and A. H. Nugraha, “Estimasi Kandungan Stok Karbon Pada Ekosistem Padang Lamun Di Perairan Dompak Dan Berakit, Kepulauan Riau,” Jurnal Ilmu dan Teknologi Kelautan Tropis, vol. 12, no. 3, pp. 849–862, 2020, doi: 10.29244/jitkt.v12i3.32199.

[25] A. Rustam, N. Sudirman, R. Nur, and A. Ati, “Seagrass Ecosystem Carbon Stock in the Small Islands: Case Study in Spermonde Island, South Sulawesi, Indonesia,” Jurnal Segara, vol. 13, no. 2, pp. 97–106, 2017.

[26] M. Stankovic, J. Panyawai, K. Jansanit, T. Upanoi, and A. Prathep, “Carbon content in different seagrass species in andaman coast of Thailand,” Sains Malaysiana, vol. 46, no. 9, pp. 1441–1447, 2017, doi: 10.17576/jsm-2017-4609-12.

[27] A. G. B. Reyes, M. C. S. Vergara, A. C. Blanco, and S. G. Salmo, “Seagrass biomass and sediment carbon in conserved and disturbed seascape,” Ecological Research, vol. 37, no. 1, pp. 67–79, 2022, doi: 10.1111/1440-1703.12272.

[28] I. Mazarrasa et al., “Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies,” Global Biogeochemical Cycles, vol. 35, no. 6, Jun. 2021, doi: 10.1029/2021GB006935.

[29] J. B. Alemu I et al., “Geomorphic gradients in shallow seagrass carbon stocks,” Estuarine, Coastal and Shelf Science, vol. 265, p. 107681, 2022, doi: 10.1016/j.ecss.2021.107681.

[30] Mukmin., L. I. Sari, and Nurfadilah, “Kota Bontang Conditions Seagrass Density and Sediments in the Waters of Selangan Hamlet , Bontang City,” Tropical Aquatic Sciences, vol. 2, no. 2, pp. 196–202, 2023, doi: https://doi.org/10.30872/tas.v2i2.788.

Downloads

Published

2025-03-25

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.