Pengaruh Suhu Permukaan Laut dan Klorofil-A terhadap Kelimpahan Ikan Lemadang (Coryphaena Hippurus) di Perairan Selatan Jawa

The Influence of Sea Surface Temperature and Chlorophyll-A on the Abundance of Dolphinfish (Coryphaena Hippurus) in the Southern Java Waters

Authors

DOI:

https://doi.org/10.21776/ub.jfmr.2025.009.01.4

Keywords:

Generalized Additive Model, Ikan Lemadang, Klorofil-A, Penginderaan Jauh, Suhu Permukaan Laut, Chlorophyll-A, Dolphinfish, Remote Sensing, Sea Surface Temperature

Abstract

Hubungan antara kondisi oseanografi dan kelimpahan ikan lemadang (Coryphaena hippurus) di Perairan Selatan Jawa merupakan aspek penting dalam memahami dinamika habitat dan pengelolaan perikanan berkelanjutan. Penelitian ini bertujuan untuk menganalisis pengaruh suhu permukaan laut (SPL) dan konsentrasi klorofil-a terhadap kelimpahan ikan lemadang di wilayah tersebut. Studi ini didasarkan pada analisis data penangkapan ikan selama periode 2019-2023 dan dinamika parameter lingkungan di Perairan Selatan Jawa. Observasi SPL dan klorofil-a dilakukan melalui teknologi penginderaan jauh. GAM dipilih untuk mengidentifikasi ambang batas dari masing-masing parameter dan hubungan empirisnya dengan CPUE ikan lemadang. Hasil penelitian menunjukkan bahwa SPL dan klorofil-a memiliki pengaruh yang signifikan terhadap kelimpahan ikan lemadang. Kisaran optimal SPL dan klorofil-a untuk ikan lemadang masing-masing adalah 25,5-30,57° C dan 0,04-1,33 mg/m3. Dengan demikian, temuan ini dapat memberikan wawasan mengenai preferensi habitat ikan lemadang di Perairan Selatan Jawa.

 

The relationship between oceanographic conditions and the abundance of dolphinfish (Coryphaena hippurus) in the Southern Java Waters is essential in understanding habitat dynamics and sustainable fisheries management. This study aims to analyze the effects of sea surface temperature (SST) and chlorophyll-a concentration on the abundance of dolphinfish in the region. The study is based on the analysis of fish catch data from 2019 to 2023 and the dynamics of environmental parameters in the Southern Java Waters. SST and chlorophyll-a observations were conducted using remote sensing technology. The generalized additive model (GAM) was chosen to identify the thresholds of each parameter and their empirical relationship with the dolphinfish CPUE. The results show that SST and chlorophyll-a significantly influence dolphinfish abundance. The optimal ranges for SST and chlorophyll-a for dolphinfish are 25.5–30.57 °C and 0.04–1.33 mg/m³, respectively. These findings provide valuable insights into the habitat preferences of dolphinfish in the Southern Java Waters.

References

[1] H. Hartaty and A. C. Amalia, “Karakteristik Perikanan Lemadang (Coryphaena hippurus Linnaeus, 1758) sebagai Hasil Tangkapan Sampingan Perikanan Tuna di Sendang Biru,” in Prosiding Seminar Nasional Ikan ke 8, 2015.

[2] J. C. Báez, J. A. Camiñas, P. Hernández, M. Vasconcellos, S. García-Barcelona, and D. Macías, “North Atlantic Oscillation Affects Dolphinfish Catch and Bycatch in the Western Mediterranean Sea,” Reg. Stud. Mar. Sci., vol. 36, p. 101303, 2020, doi: 10.1016/j.rsma.2020.101303.

[3] E. Marín-Enríquez and A. Muhlia-Melo, “Environmental and Spatial Preferences of Dolphinfish (Coryphaena spp.) in the Eastern Pacific Ocean Off the Coast of Mexico,” Fish. Bull., vol. 116, no. 1, pp. 9–20, 2017, doi: 10.7755/fb.116.1.2.

[4] A. Tripp-Valdez, F. Galván-Magaña, and S. Ortega-García, “Feeding Habits of Dolphinfish (Coryphaena hippurus) in the Southeastern Gulf of California, Mexico,” J. Appl. Ichthyol., vol. 26, no. 4, pp. 578–582, 2010, doi: 10.1111/j.1439-0426.2010.01483.x.

[5] Yonvitner, M. Boer, I. Setyobudiandi, M. Tamanyira, A. Habibi, and D. Destilawaty, “Kerentanan Spesies Non Target (Retain) Dalam Perikanan Tuna Longline Berbasis Data Produktivitas dan Susceptabilitas,” TECHNO-FISH, vol. 4, no. 1, pp. 22–37, 2020, doi: 10.25139/tf.v4i1.2241.

[6] U. Chodrijah and D. Nugroho, “Struktur Ukuran dan Parameter Populasi Ikan Lemadang (Coryphaena hippurus Linnaeus, 1758 ) di Laut Sulawesi,” BAWAL Widya Ris. Perikan. Tangkap, vol. 8, no. 3, p. 147, 2016, doi: 10.15578/bawal.8.3.2016.147-158.

[7] C. Susila, A. Ghofar, and S. W. Saputra, “Analisis Stok dan Tingkat Pemanfaatan Sumberdaya Ikan Lemadang (Coryphaena hippurus) Berdasarkan Data di Pelabuhan Perikanan Samudera Cilacap,” J. Kelaut. Trop., vol. 23, no. 3, pp. 362–372, 2020, doi: 10.14710/jkt.v23i3.8491.

[8] M. Ochoa-Zavala, P. Diaz-Jaimes, S. Ortega-García, and F. Galván-Magaña, “Genetic Divergence at Species Boundaries of the Dolphinfish (Coryphaena hippurus) in the Tropical Eastern Pacific,” PeerJ, vol. 10, pp. e14389–e14389, Nov. 2022, doi: 10.7717/peerj.14389.

[9] A. Rusandi, A. Hakim, B. Wiryawan, Sarmintohadi, and I. Yulianto, “Pengembangan Kawasan Konservasi Perairan untuk Mendukung Pengelolaan Perikanan yang Berkelanjutan di Indonesia,” Mar. Fish. J. Mar. Fish. Technol. Manag., vol. 12, no. 2, pp. 137–147, 2021, doi: 10.29244/jmf.v12i2.37047.

[10] G. B. Pratama, T. W. Nurani, M. Mustaruddin, and Y. Herdiyeni, “Hubungan Parameter Oseanografi Perairan Terhadap Pola Musim Ikan Pelagis di Perairan Palabuhanratu,” J. Teknol. Perikan. dan Kelaut., vol. 13, no. 1, pp. 67–78, 2022, doi: 10.24319/jtpk.13.67-78.

[11] M. Nursan, Y. Yonvitner, and S. B. Agus, “Distribution of Skipjack (Katsuwonus Pelamis) Fishing Areas using Purse Seine Fishing Equipment in WPP 573,” J. Trop. Fish. Manag., vol. 6, no. 1, 2022, doi: 10.29244/jppt.v6i1.40999.

[12] S. Safruddin, R. Hidayat, and M. Zainuddin, “Oceanographic Conditions on Small Pelagic Fishery in the Gulf of Bone Waters,” Torani J. Fish. Mar. Sci., pp. 48–58, 2018, doi: 10.35911/torani.v1i2.4442.

[13] J. Torrejón-Magallanes, D. Grados, and W. Lau-Medrano, “Spatio-temporal Distribution Modeling of Dolphinfish (Coryphaena hippurus) in the Pacific Ocean Off Peru using Artisanal Longline Fishery Data,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 169–170, p. 104665, 2019, doi: 10.1016/j.dsr2.2019.104665.

[14] Safruddin, R. Hidayat, S. A. Farhum, and M. Zainuddin, “The Use of Statistical Models in Identifying Skipjack Tuna Habitat Characteristics During the Southeast Monsoon in the Bone Gulf, Indonesia,” Biodiversitas J. Biol. Divers., vol. 23, no. 4, 2022, doi: 10.13057/biodiv/d230459.

[15] B. Semedi, Hardoko, S. N. F. Dewi, and P. D. N. Fatimah A., “GAM (Generalized Additive Model) Analysis for Predicting Potential Area of Lemuru in Bali Strait,” JFMR-Journal Fish. Mar. Res., vol. 6, no. 1, pp. 33–40, 2022, doi: 10.21776/ub.jfmr.2022.006.01.5.

[16] B. Semedi, Hardoko, A. B. Sambah, and L. S. Agatha, “Oceanographic Parameter Analysis Using GIS and GAM for Potential Fishing Zone Mapping of Bigeye Tuna (Thunnus obesus),” JFMR-Journal Fish. Mar. Res., vol. 5, no. 1, pp. 164–171, 2021, doi: 10.21776/ub.jfmr.2021.005.01.22.

[17] M. Z. Lubis, O. Gustin, W. Anurogo, H. Kausarian, K. Anggraini, and A. Hanafi, “Penerapan Teknologi Pengideraan Jauh di Bidang Pesisir dan Lautan,” OSEANA, vol. 42, no. 3, pp. 56–64, 2017, doi: 10.14203/oseana.2017.vol.42no.3.85.

[18] J. C. Kumaat, M. M. F. Rampengan, and S. T. B. Kandoli, “Geographic Information System for Tuna Fishing Areas in Bitung Waters,” J. Ilm. PLATAX, vol. 6, no. 2, p. 147, 2018, doi: 10.35800/jip.6.2.2018.21434.

[19] B. Sasmito, N. Bashit, B. R. Arinda, and A. Sukmono, “Application of Generalized Additive Model for Identification of Potential Fishing Zones Using Aqua and Terra MODIS Imagery Data,” J. Appl. Geospatial Inf., vol. 6, no. 1, pp. 583–591, 2022, doi: 10.30871/jagi.v6i1.3962.

[20] T. Hastie and R. Tibshirani, “Generalized Additive Models,” Stat. Sci., vol. 1, no. 3, 1986, doi: 10.1214/ss/1177013604.

[21] N. P. Purba, M. F. Akhir, W. S. Pranowo, Subiyanto, and Z. Zainol, “Seasonal Water Mass Transformation in the Eastern Indian Ocean from In Situ Observations,” Atmosphere (Basel)., vol. 15, no. 1, p. 1, 2023, doi: 10.3390/atmos15010001.

[22] Z. D. Istnaeni, J. L. Gaol, M. Zainuddin, and D. Fitrianah, “Implementation of the Pelagic Hotspot Index In Detecting The Habitat Suitability Area For Bigeye Tuna (Thunnus obesus) in the Eastern Indian Ocean,” Biodiversitas J. Biol. Divers., vol. 24, no. 9, 2023, doi: 10.13057/biodiv/d240948.

[23] M. L. Syamsuddin, S.-I. Saitoh, T. Hirawake, S. Bachri, and A. B. Harto, “Effects of El Niño–Southern Oscillation Events on Catches of Bigeye Tuna (Thunnus obesus) in the Eastern Indian Ocean Off Java,” Fish. Bull., vol. 111, no. 2, pp. 175–188, 2013, doi: 10.7755/fb.111.2.5.

[24] M. D. Setiawati, A. B. Sambah, F. Miura, T. Tanaka, and A. R. As-syakur, “Characterization of Bigeye Tuna Habitat in the Southern Waters Off Java–Bali using remote sensing data,” Adv. Sp. Res., vol. 55, no. 2, pp. 732–746, 2014, doi: 10.1016/j.asr.2014.10.007.

[25] D. Sutono Hs., R. Perangin-angin, H. Suharyanto, Dendi, and N. Zuhry, “Analisis Tingkat Pemanfaatan Sumberdaya Ikan di Perairan Pantai Kabupaten Tegal, Jawa Tengah.,” J. Perikan. dan Kelaut., vol. 11, no. 1, pp. 89–100, 2021, doi: 10.47685/barakuda45.v4i1.220.

[26] C. Hua, Q. Zhu, Y. Shi, and Y. Liu, “Comparative Analysis of CPUE Standardization of Chinese Pacific Saury (Cololabis saira) Fishery Based on GLM and GAM,” Acta Oceanol. Sin., vol. 38, no. 10, pp. 100–110, 2019, doi: 10.1007/s13131-019-1486-3.

[27] A. R. Puspita, M. L. Syamsuddin, Subiyanto, F. Syamsudin, and N. P. Purba, “Predictive Modeling of Eastern Little Tuna (Euthynnus affinis) Catches in the Makassar Strait Using the Generalized Additive Model,” J. Mar. Sci. Eng., vol. 11, no. 1, p. 165, 2023, doi: 10.3390/jmse11010165.

[28] N. R. K. Mantiri, F. F. Tilaar, S. B. Pratasik, H. Sinjal, A. V Lohoo, and A. B. Rondonuwu, “Morphological Characteristics of Dolphinfish Coryphaena hippurus Linnaeus 1758 Landed in Kalinaun Village, East of Likupang District, North Sulawesi,” J. Ilm. PLATAX, vol. 11, no. 1, pp. 114–121, 2023, doi: 10.35800/jip.v11i1.44916.

[29] B. J. Palko, G. L. Beardsley, and W. J. Richards, “Synopsis of the Biological Data on Dolphin-Fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus.,” FAO Fish. Synop. 130., 1982.

[30] European Commision, “Coryphaena hippurus.” Accessed: Mar. 04, 2024. [Online]. Available: https://fish-commercial-names.ec.europa.eu/fish-names/species/coryphaena-hippurus_en

[31] S. Oktaviyani, M. Boer, and . Yonvitner, “Analisis Degradasi dan Depresiasi Sumberdaya Ikan Demersal Pada Perikanan Dogol di Perairan Selat Sunda (Degradation and Depreciation Analysis of Demersal Fish Resources on Dogol Fisheries in Sunda Strait),” Mar. Fish. J. Mar. Fish. Technol. Manag., vol. 6, no. 2, pp. 119–128, 2015, doi: 10.29244/jmf.6.2.119-128.

[32] F. Simanjuntak and T.-H. Lin, “Monsoon Effects on Chlorophyll-a, Sea Surface Temperature, and Ekman Dynamics Variability along the Southern Coast of Lesser Sunda Islands and Its Relation to ENSO and IOD Based on Satellite Observations,” Remote Sens., vol. 14, no. 7, p. 1682, 2022, doi: 10.3390/rs14071682.

[33] Y. D. Haryanto et al., “Effect of Monsoon Phenomenon on Sea Surface Temperatures in Indonesian Throughflow Region and Southeast Indian Ocean,” J. Southwest Jiaotong Univ., vol. 56, no. 6, pp. 914–923, 2021, doi: 10.35741/issn.0258-2724.56.6.80.

[34] E. N. Ningsih, A. Agussalim, B. S. Barus, and Hartoni, “Variabilitas Spasio-Temporal Suhu Permukaan Laut di Pesisir Kabupaten Banyuasin Propinsi Sumatera Selatan,” J. Enggano, vol. 9, no. 1, pp. 1–10, 2024, doi: 10.31186/jenggano.9.1.1-10.

[35] W. R. Maharani, H. Setiyono, and W. B. Setyawan, “Studi Distribusi Suhu, Salinitas, dan Densitas Secara Vertikal dan Horizontal di Perairan Pesisir, Probolinggo, Jawa Timur.,” J. Oseanografi, vol. 3, no. 2, pp. 151–160, 2014.

[36] A. Ramadani, M. P. Suhana, and T. Febrianto, “Karakteristik Spasial Suhu Permukaan Laut Perairan Kota Tanjungpinang pada Empat Musim Berbeda,” J. Kelaut. Indones. J. Mar. Sci. Technol., vol. 15, no. 1, pp. 39–59, 2022, doi: 10.21107/jk.v15i1.10832.

[37] S. I. Patty and R. Huwae, “Temperature, Salinity and Dissolved Oxygen West and East seasons in the Waters of Amurang Bay, North Sulawesi,” J. Ilm. PLATAX, vol. 11, no. 1, pp. 196–205, 2023, doi: 10.35800/jip.v11i1.46651.

[38] M. R. Muskananfola, Jumsar, and A. Wirasatriya, “Spatio-temporal Distribution of Chlorophyll-A Concentration, Sea Surface Temperature and Wind Speed Using Aqua-Modis Satellite Imagery Over the Savu Sea, Indonesia,” Remote Sens. Appl. Soc. Environ., vol. 22, p. 100483, 2021, doi: 10.1016/j.rsase.2021.100483.

[39] A. S. Budiman, D. G. Bengen, I. W. Nurjaya, Z. Arifin, and M. F. A. Ismail, “The Spatio-Temporal Variability of Chlorophyll-A and Its Physical Variables in the South Java Sea Shelf,” J. Hunan Univ., vol. 48, no. 7, pp. 21–36, 2021.

[40] A. B. Sambah, A. Noor’izzah, C. A. Intyas, D. Widhiyanuriyawan, D. P. Affandy, and A. Wijaya, “Analysis of the Effect of ENSO and IOD on the Productivity of Yellowfin Tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia,” Biodiversitas J. Biol. Divers., vol. 24, no. 5, 2023, doi: 10.13057/biodiv/d240522.

[41] L. Maslukah, M. Zainuri, A. Wirasatriya, and U. Salma, “Spatial Distribution of Chlorophyll-a and Its Relationship with Dissolved Inorganic Phosphate Influenced by Rivers in the North Coast of Java,” J. Ecol. Eng., vol. 20, no. 7, pp. 18–25, 2019, doi: 10.12911/22998993/108700.

[42] A. E. Wardani, M. Zainuri, S. Y. Wulandari, and B. Rochaddi, “Sebaran Klorofil-a dan Material Padatan Tersuspensi (MPT) di Muara Sungai Loji, Pekalongan,” Indones. J. Oceanogr., vol. 6, no. 3, pp. 229–238, 2024, doi: 10.14710/ijoce.v6i3.18194.

[43] E. R. Farrell, A. M. Boustany, P. N. Halpin, and D. L. Hammond, “Dolphinfish (Coryphaena hippurus) Distribution in Relation to Biophysical Ocean Conditions in the Northwest Atlantic,” Fish. Res., vol. 151, pp. 177–190, 2014, doi: 10.1016/j.fishres.2013.11.014.

[44] C. Salvadeo, D. M. Auliz-Ortiz, D. Petatán-Ramírez, H. Reyes-Bonilla, A. Ivanova-Bonchera, and E. Juárez-León, “Potential Poleward Distribution Shift of Dolphinfish (Coryphaena hippurus) Along the Southern California Current System,” Environ. Biol. Fishes, vol. 103, no. 8, pp. 973–984, 2020, doi: 10.1007/s10641-020-00999-0.

[45] C. Hernández-Tlapale, J. T. Ketchum, E. Marín-Enríquez, and A. Muhlia-Melo, “Horizontal and Vertical Movements of the Common Dolphinfish (Coryphaena hippurus) in La Paz Bay, Mexico,” Ciencias Mar., vol. 41, no. 4, pp. 283–295, 2015, doi: 10.7773/cm.v41i4.2560.

[46] W. Merten, R. Appeldoorn, R. Rivera, and D. Hammond, “Diel Vertical Movements of Adult Male Dolphinfish (Coryphaena hippurus) in the Western Central Atlantic as Determined by Use of Pop-Up Satellite Archival Transmitters,” Mar. Biol., vol. 161, no. 8, pp. 1823–1834, 2014, doi: 10.1007/s00227-014-2464-0.

[47] A. M. Arias, L. O. González Salcedo, I. F. Benavides Martínez, and J. Josephraj Selvaraj, “Satellite and Historical Data, and Statistical Modeling to Predict Potential Fishing Zones For Dolphinfish, Coryphaena hippurus (Perciformes: Coryphaenidae) in Colombian Pacific,” Rev. Biol. Trop., vol. 70, no. 1, 2022, doi: 10.15517/rev.biol.trop..v70i1.47375.

[48] E. Marín‐Enríquez, J. Seoane, and A. Muhlia‐Melo, “Environmental Modeling of Occurrence of Dolphinfish (Coryphaena spp.) in the Pacific Ocean Off Mexico Reveals Seasonality in Abundance, Hot Spots and Migration Patterns,” Fish. Oceanogr., vol. 27, no. 1, pp. 28–40, 2017, doi: 10.1111/fog.12231.

[49] A. L. Latifah, S. Y. Wulandari, and K. Kunarso, “Hubungan Suhu Permukaan Laut (SPL) dan Klorofil-a Terhadap Hasil Tangkapan Yellowfin Tuna (Thunnus albacares) yang Didaratkan di Pelabuhan Tamperan, Pacitan,” Indones. J. Oceanogr., vol. 6, no. 3, pp. 197–208, 2024, doi: 10.14710/ijoce.v6i3.20575.

[50] S. Ghosh, S. Mamidi, M. Hoshalli Munivenkatappa, P. Rohit, A. Eruppakkottil Median, and G. Achamveetil, “Observations on Feeding Habits of the Common Dolphinfish, Coryphaena hippurus (Linnaeus 1758) From the Western Bay of Bengal,” Aquat. Living Resour., vol. 34, p. 24, 2021, doi: 10.1051/alr/2021022.

[51] S. Brodie et al., “Modelling the Oceanic Habitats of Two Pelagic Species Using Recreational Fisheries Data,” Fish. Oceanogr., vol. 24, no. 5, pp. 463–477, 2015, doi: 10.1111/fog.12122.

[52] H. U. Solanki, D. Bhatpuria, and P. Chauhan, “Applications of Generalized Additive Model (GAM) to Satellite-Derived Variables and Fishery Data for Prediction of Fishery Resources Distributions in the Arabian Sea,” Geocarto Int., vol. 32, no. 1, pp. 30–43, 2016, doi: 10.1080/10106049.2015.1120357.

[53] T. Maggio et al., “Historical Separation and Present-Day Structure of Common Dolphinfish (Coryphaena hippurus) Populations in the Atlantic Ocean and Mediterranean Sea,” ICES J. Mar. Sci., vol. 76, no. 4, pp. 1028–1038, 2019, doi: 10.1093/icesjms/fsy174.

[54] R. O. Martínez-Rincón, S. Ortega-García, and J. G. Vaca-Rodriguez, “Incidental Catch of Dolphinfish (Coryphaena spp.) Reported by the Mexican Tuna Purse Seiners in the Eastern Pacific Ocean,” Fish. Res., vol. 96, no. 2–3, pp. 296–302, 2009, doi: 10.1016/j.fishres.2008.12.008.

[55] H. Powles, “Distribution and Movements of Neustonic Young of Estuarine Dependent (Mugil spp., Pomatomus Saltatrix) and Estuarine Independent (Coryphaena spp.) Fishes off the Southeastern United States.,” Rapp. Procès-Verbaux des Réunions la Comm. Int. pour l’Exploration Sci. la Mer Méditerranée, vol. 178, pp. 207–209, 1981.

[56] L. L. Kitchens and J. R. Rooker, “Habitat Associations of Dolphinfish Larvae in the Gulf of Mexico,” Fish. Oceanogr., vol. 23, no. 6, pp. 460–471, 2014, doi: 10.1111/fog.12081.

[57] S. Furukawa et al., “Vertical Movements of Pacific Bluefin Tuna (Thunnus orientalis) and Dolphinfish (Coryphaena hippurus) Relative to the Thermocline in the Northern East China Sea,” Fish. Res., vol. 149, pp. 86–91, 2014, doi: 10.1016/j.fishres.2013.09.004.

[58] S.-J. Lin et al., “Movement Behaviour of Released Wild and Farm-Raised Dolphinfish Coryphaena hippurus Tracked by Pop-Up Satellite Archival Tags,” Fish. Sci., vol. 85, no. 5, pp. 779–790, 2019, doi: 10.1007/s12562-019-01334-y.

Downloads

Published

2025-03-25

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.