PENGARUH SALINITAS TERHADAP PERTUMBUHAN, BIOMASSA DAN KLOROFIL-a DUNALIELLA SP.

Muhammad Fakhri, Arning Wilujeng Ekawati
  JFMR, pp. 393-398  

Abstract


Dunaliella sp. merupakan mikroalga hijau yang kaya beta karoten dan klorofil, bersifat euryhaline, dan telah banyak dimanfaatkan untuk budidaya ikan dan udang. Salah satu strategi yang dilakukan untuk meningkatkan produktivas mikroalga adalah dengan melakukan optimasi kondisi lingkungan. Salinitas merupakan factor esensial yang mempengaruhi pertumbuhan dan kandungan biokimia Dunaliella. Tujuan penelitian ini adalah untuk menjelaskan pengaruh salinitas yang berbeda dan menentukan salinitas terbaik untuk pertumbuhan, produksi biomassa, dan klorofil-a Dunaliella sp. salinitas yang berbeda yaitu 5 ppt, 15 ppt, 25 ppt, dan 35 ppt digunakan pada penelitian ini. Hasil dari penelitian ini menunjukkan bahwa salinitas yang berbeda berpengaruh terhadap pertumbuhan, produksi biomassa, dan klorofil-a Dunaliella sp. (p<0,05). Salinitas terbaik untuk pertumbuhan, produksi biomassa dan klorofil-a Dunaliella sp. diperoleh pada salinitas 15 ppt yang menghasilkan konsentrasi sel maksimum sebesar 19,86 x 106 sel mL-1, biomassa 0,52 g l-1, dan klorofil-a 11,26 mg/l. Laju pertumbuhan yang tinggi berhubungan dengan biomassa dan kandungan klorofil-a Dunaliella sp. Dapat disimpulkan bahwa salinitas yang berbeda memberikan pengaruh signifikan terhadap pertumbuhan, produksi biomassa, dan klorofil-a Dunaliella sp. Disarankan menggunakan salinitas 15 ppt untuk menghasilkan pertumbuhan, produksi biomassa dan klorofil-a yang optimal.


Keywords


euryhaline, konsentrasi sel, laju pertumbuhan spesifik, mikroalga hijau, salinitas

Full Text:

PDF

References


M. Janssen, “Cultivation of microalgae : effect of light / dark cycles on biomass yield,” Unpubl. Master’s thesis Wageningen Univ. Wageningen Netherlands, vol. 1191, no. 2006, p. 184, 2002.

K. I. Reitan, J. R. Rainuzzo, G. Øie, and Y. Olsen, “A review of the nutritional effects of algae in marine fish larvae,” Aquaculture, vol. 155, no. 1–4, pp. 207–221, 1997, doi: 10.1016/S0044-8486(97)00118-X.

M. A. Borowitzka, Dunaliella: Biology, Production, and Markets. 2013.

E. W. 1994. Becker, “Microalgae Biotechnology and Microbiology,” p. p 177-180., 1994.

R. Darsi, A. Supriadi dan A. D. Sasanti, “Karakteristik Kimiawi dan Potensi Pemanfaatan Dunaliella salina dan Nannochloropsis sp ,” no. 1996, pp. 14–25, 2012.

L. Dufossé et al., “Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality?,” Trends Food Sci. Technol., vol. 16, no. 9, pp. 389–406, 2005, doi: 10.1016/j.tifs.2005.02.006.

W. J. Henley, K. M. Major, and J. L. Hironaka, “Response to salinity and heat stress in two halotolerant chlorophyte algae,” J. Phycol., vol. 38, no. 4, pp. 757–766, 2002, doi: 10.1046/j.1529-8817.2002.01172.x.

M. Fakhri, N. B. Arifin, B. Budianto, A. Yuniarti, and A. M. Hariati, “Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp.,” Nat. Environ. Pollut. Technol., vol. 14, no. 3, pp. 563–566, 2015.

M. Fakhri, N. B. Arifin, A. Yuniarti, and A. M. Hariati, “The Influence of Salinity on the Growth and Chlorophyll Content of Nannochloropsis sp. BJ17,” pp. 15–18, 2017.

A. K. Cowan and P. D. Rose, “Abscisic acid metabolism in salt-stressed cells of Dunaliella salina: Possible interrelationship with β-carotene accumulation,” Plant Physiol., vol. 97, no. 2, pp. 798–803, 1991, doi: 10.1104/pp.97.2.798.

A. Richmond and E. W. Becker, “Handbook of Microalgal Mass Culture (1986),” Handbook of Microalgal Mass Culture (1986). pp. 245–264.

S. Banerjee, W. E. Hew, H. Khatoon, and M. Shariff, “Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions,” vol. 10, no. 8, pp. 1375–1383, 2011.

L. Loeblich, “Photosynthesis and Pigments Influenced By Light Intensity and Salinity in the Halophile Dunaliella Salina (Chlorophyta),” J. Mar. Biol. Assoc. United Kingdom, vol. 62, no. 3, pp. 493–508, 1982.

N. S. Adenan, F. M. Yusoff, and M. Shariff, “Effect of salinity and temperature on the growth of diatoms and green algae,” J. Fish. Aquat. Sci., vol. 8, no. 2, pp. 397–404, 2013, doi: 10.3923/jfas.2013.397.404.

and T. G. Ak, I., S. Cirik, “Effect of light intensity, salinity and temperature on growth in Camalt1 strain of Dunaliella viridis Teodoresco from Turkey,” J. Biol. Sci., vol. 8, no. 8, pp. 1356–1359, 2008.

U. Pick, “Adaptation of the Halotolerant Alga Dunaliella to High Salinity,” Salin. Environ. - Plants - Mol., pp. 97–112, 2006, doi: 10.1007/0-306-48155-3_5.

M. Janssen et al., “Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13-87 s,” Progress in Industrial Microbiology, vol. 35, no. C. pp. 323–333, 1999, doi: 10.1016/S0079-6352(99)80124-6.

A. Bennett, and L. Bogorad “Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology. 58: 419-435.,” J. Cell Biol., vol. 58, pp. 419–435, 1973, doi: 10.1016/S0022-3468(89)80710-9.

H. K. Lichtenthaler, “Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes,” J. Methods Enzymol., vol. 148, pp. 350–382, 1987.

R. J. Ritchie, “Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents,” Photosynth. Res., vol. 89, no. 1, pp. 27–41, 2006, doi: 10.1007/s11120-006-9065-9.

N. Rosales, J. Ortega, R. Mora, and E. Morales, “Influencia de la salinidad sobre crecimiento y composición bioquímica de la cianobacteria Synechococcus sp,” Ciencias Mar., vol. 31, no. 2, pp. 349–355, 2005, doi: 10.7773/cm.v31i2.59.

M. Takagi, Karseno, and T. Yoshida, “Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells,” J. Biosci. Bioeng., vol. 101, no. 3, pp. 223–226, 2006, doi: 10.1263/jbb.101.223.

K. Frank, G. Wegmann, “Physiology and biochemistry of glycerol biosynthesis in Dunaliella.,” Biol. Zent. Bl., vol. 93, pp. 707–723, 1974.

A. D. B. Kessley D.S., “Salt relations of Dunaliella: transitional changes in glycerol content and oxygen exchange reactions on water stress,” Microbiol., vol. 129, pp. 154–159, 1981.

G. O. Kirst, “Salinity tolerance of eukaryotic marine algae,” Annu. Rev. Plant Physiol. Plant Mol. Biol., vol. 41, no. 1, pp. 21–53, 1990, doi: 10.1146/annurev.pp.41.060190.000321.

N. Gu, Q. Lin, G. Li, Y. Tan, L. Huang, and J. Lin, “Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179,” Engineering in Life Sciences, vol. 12, no. 6. pp. 631–637, 2012, doi: 10.1002/elsc.201100204.

F. Ghezelbash, T. Farboodnia, R. Heidari, and N. Agh, “Biochemical Effects of Different Salinities and Luminance on Green Microalgae Tetraselmis chuii,” Res. J. Biol. Sci., vol. 3, no. 2, pp. 217–221, 2008, [Online]. Available: http://en.scientificcommons.org/42126563.

A. M. M. Junior, E. B. Neto, M. L. Koening, and E. Eskinazi, “Chemical Compositon of Three Microalgae Species for Possible Use in Mariculture,” vol. 50, no. May, pp.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JFMR (Journal of Fisheries and Marine Research)